نوع مقاله: مقاله پژوهشی

نویسنده

استادیار، گروه محیط زیست طبیعی و تنوع زیستی، دانشکده محیط زیست، سازمان حفاظت محیط زیست

چکیده

گرد و غبار یکی از فرآیندهای مهم مناطق خشک و نیمه­ خشک است که وقوع آن در سال­های اخیر در ایران افزایش پیدا کرده است. شناسایی کانون­های تولیدکننده این پدیده اولین گام در مدیریت و کنترل آن به شمار می­رود. به دلیل خشک و نیمه خشک بودن اقلیم­هایی که پدیده گرد و غبار در آنها به وقوع می­پیوندد، همواره مناطق وسیعی برای پایش و کنترل وجود دارند که عملاً مدیریت آنها را ناممکن می­سازد. از اینرو کاهش مناطق کاندید به سطوح واقعی تولیدکننده یکی از دغدغه­ های اصلی پژوهشگران به شمار می­رود. در این مقاله، با استفاده از داده­ های دورسنجی، به شناسایی کانون­های بالقوه تولید گرد و غبار در استان البرز پرداخته شده است. شاخص­های طیفی رطوبت و پوشش گیاهی مختلفی بر روی داده­های سنجنده OLI اعمال شد و بر اساس میزان تغییرات در منطقه مطالعاتی شاخص­های رطوبت مربوط به تبدیل تسلد کپ و پوشش گیاهی DVI انتخاب و بر روی تصاویر سال­های 2013، 2014 و 2015 اعمال گردید و نقشه پتانسیل فرسایش ­پذیری رطوبت و پوشش گیاهی تولید شد. شاخص طیفی زبری بر داده مدل رقومی ارتفاع سنجنده ASTER اعمال و نقشه پتانسیل فرسایش­ پذیری زبری تهیه گردید. با استفاده از اطلاعات زمین­ شناسی، نقشه حساسیت فرسایش ­پذیری سنگ­ها تولید شد. با تلفیق نقشه­ های پتانسیل فرسایش­ پذیری در مدل ارزیابی چند معیاره و انجام عملیات میدانی نقشه کانون­های بالقوه ریزگرد تهیه گردید و بر اساس یک طرح نمونه­ برداری مورد بازدید قرار گرفتند. نتایج نشان داد که با استفاده از تصاویر ماهواره­ای و اعمال شاخص­های طیفی، به ­خوبی می­توان کانون­های بالقوه تولید گرد و غبار را شناسایی نمود.

کلیدواژه‌ها

عنوان مقاله [English]

Identification of potential dust sources using remote sensing data (Case Study: Alborz Province)

نویسنده [English]

  • Behzad Rayegani

Assistant Professor, Natural Environment and Biodiversity Department, College of Environment, Department of Environment, Karaj, Iran

چکیده [English]

Dust is one of the important processes of arid and semiarid regions that its occurrence has increased in recent years in Iran. Identifying the dust and sand sources, it is the first step in the management and control of this phenomenon. Because of the arid and semiarid climates where dust phenomenon takes place, always there are large areas to monitor and control that practically makes it impossible to manage them. Therefore, reduce the candidate regions to actual sources is one of the main concerns of the researchers. In this paper, identification of potential dust sources using remotely sensed data has been studied. Various spectral indices of moisture and vegetation were applied on the OLI sensor data and finally, wetness spectral index of Tasseled Cap Transformation and DVI vegetation index were selected based on their variation in the study area and was applied on satellite images from 2013 to 2015 and credibility potential maps of moisture and vegetation was produced. Roughness index was applied on the ASTER digital elevation model and credibility potential map of roughness was produced. Erosion sensitivity map of rocks was produced using geological maps. Potential dust sources map was prepared with a combination of credibility potential maps in multi- criteria evaluation model and validate using field based and these areas were visited based on stratified random sampling scheme. Results showed that as well can be identified potential dust sources using satellite images and determining to apply various indices.

کلیدواژه‌ها [English]

  • Tasseled Cap Transformation
  • DVI
  • OLI
  • ASTER
  • Roughness
  • potential dust sources

اداره کل حفاظت محیط زیست استان البرز، وضعیت محیط زیست استان البرز، تهدیدها، فرصت­ها و راهکارهای پیشنهادی. 1394، قابل دسترس از: http://alborz.doe.ir/portal/File/ShowFile.aspx?ID=0d70ec13-80c2-48f7-ac7a-3e3027f5c2e9

اداره کل هواشناسی استان البرز، نگرشی بر ویژگی­های اقلیمی استان البرز. 1394، قابل دسترس از: http://www.alborz-met.ir/Dorsapax/Data/Sub_0/File/pahnehbandy.p%20df.pdf

Alimohammadi, M., Alirezaei, S., & Kontak, D.J. (2015). Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo–Sarmeshk area, southern part of the Kerman copper belt, Iran. Ore Geology Reviews, 70, 290-304

Baig, M.H.A., Zhang, L., Shuai, T., & Tong, Q. (2014). Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sensing Letters, 5, 423-431

Banks, J., Brindley, H., Flamant, C., Garay, M., Hsu, N., Kalashnikova, O., Klüser, L., & Sayer, A. (2013). Intercomparison of satellite dust retrieval products over the west African Sahara during the Fennec campaign in June 2011. Remote Sensing of Environment, 136, 99-116

Basso, B., Cammarano, D., & De Vita, P. (2004). Remotely sensed vegetation indices: Theory and applications for crop management. Rivista Italiana di Agrometeorologia, 1, 36-53

Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Weynants, M., & Montanarella, L. (2014). TOWARDS A PAN‐EUROPEAN ASSESSMENT OF LAND SUSCEPTIBILITY TO WIND EROSION. Land Degradation & Development

Cao, H., Amiraslani, F., Liu, J., & Zhou, N. (2015a). Identification of dust storm source areas in West Asia using multiple environmental datasets. Science of the Total Environment, 502, 224-235

Cao, H., Liu, J., Wang, G., Yang, G., & Luo, L. (2015b). Identification of sand and dust storm source areas in Iran. Journal of Arid Land, 7, 567-578

Christopher, S.A., & Jones, T.A. (2010). Satellite and surface-based remote sensing of Saharan dust aerosols. Remote Sensing of Environment, 114, 1002-1007

Eastman, J.R. (2012). IDRISI Selva Tutorial. Idrisi Production, Clark Labs-Clark University, 45, 51-63

El-Askary, H.M., Sarkar, S., Kafatos, M., & El-Ghazawi, T.A. (2003). A multisensor approach to dust storm monitoring over the Nile Delta. IEEE Transactions on Geoscience and Remote Sensing, 41, 2386-2391

Ginoux, P., Chin, M., Tegen, I., Prospero, J.M., Holben, B., Dubovik, O., & Lin, S.J. (2001). Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research: Atmospheres, 106, 20255-20273

Hansen, B., Schjønning, P., & Sibbesen, E. (1999). Roughness indices for estimation of depression storage capacity of tilled soil surfaces. Soil and Tillage Research, 52, 103-111

Hatfield, J.L., & Sauer, T.J. (2011). Soil management: building a stable base for agriculture. American Society of Agronomy.

Ichoku, C., Kaufman, Y.J., Remer, L.A., & Levy, R. (2004). Global aerosol remote sensing from MODIS. Advances in Space Research, 34, 820-827

IRAN, M.F., ARAB, K.M., & AKRAM, M. (2005). INVESTIGATION OF DUST ORIGINS AND CHARACTERISTICS OF THEIR SPREADING IN SISTAN'S STORMS, IRAN REGION, USING IMAGE PROCESSING

Jenness, J. (2013). DEM surface tools for ArcGIS. Jenness Enterprises, 1-96

Jin, S., & Sader, S.A. (2005). Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sensing of Environment, 94, 364-372

Kaźmierowski, C., Ceglarek, J., Królewicz, S., Cierniewski, J., Universityc, A.M., Jasiewicz, J., & Wyczałek, M. (2015). Soil surface roughness quantification using DEM obtained from UAV photogrammetry

Kneubühler, M., Koetz, B., Richter, R., Schaepman, M., & Itten, K. (2005). Geometric and radiometric pre-processing of CHRIS/PROBA data over mountainous terrain. In, Proc. 3rd CHRIS/PROBA Workshop, Frascati (I) (pp. 21-23)

Lancaster, N., & Baas, A. (1998). Influence of vegetation cover on sand transport by wind: field studies at Owens Lake, California. Earth Surface Processes and Landforms, 23, 69-82

Lee, J.A., Baddock, M.C., Mbuh, M.J., & Gill, T.E. (2012). Geomorphic and land cover characteristics of aeolian dust sources in West Texas and eastern New Mexico, USA. Aeolian Research, 3, 459-466

Leys, J.F., & Mctainsh, G.H. (1996). SEDIMENT FLUXES AND PARTICLE GRAIN‐SIZE CHARACTERISTICS OF WIND‐ERODED SEDIMENTS IN SOUTHEASTERN AUSTRALIA. Earth Surface Processes and Landforms, 21, 661-671

Liu, Q., Liu, G., Huang, C., Liu, S., & Zhao, J. (2014). A tasseled cap transformation for Landsat 8 OLI TOA reflectance images. In, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International (pp. 541-544): IEEE

Long, X., Li, N., Tie, X., Cao, J., Zhao, S., Huang, R., Zhao, M., Li, G., & Feng, T. (2016). Urban dust in the Guanzhong Basin of China, part I: A regional distribution of dust sources retrieved using satellite data. Science of the Total Environment, 541, 1603-1613

Malczewski, J. (1999). GIS and multicriteria decision analysis. John Wiley & Sons.

Malczewski, J., & Rinner, C. (2015). Multicriteria decision analysis in geographic information science. Springer.

Mashayekhan, A., & Honardoust, F. (2011). Multi-criteria evaluation model for desertification hazard zonation mapping using GIS (Study Area: Trouti Watershed, Golestan, Iran). Journal of Rangeland Science, 1, 331-339

Mezõsi, G., Blanka, V., Bata, T., Kovács, F., & Meyer, B. (2013). Estimation of regional differences in wind erosion sensitivity in Hungary. Natural Hazards and Earth System Sciences Discussions, 1, 4713-4750

Miller, R., Tegen, I., & Perlwitz, J. (2004). Surface radiative forcing by soil dust aerosols and the hydrologic cycle. Journal of Geophysical Research: Atmospheres, 109

Prospero, J.M., Ginoux, P., Torres, O., Nicholson, S.E., & Gill, T.E. (2002). Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 40

Raupach, M.R., & Lu, H. (2004). Representation of land-surface processes in aeolian transport models. Environmental Modelling & Software, 19, 93-112

Samadi, M., Boloorani, A.D., Alavipanah, S.K., Mohamadi, H., & Najafi, M.S. (2014). Global dust Detection Index (GDDI); a new remotely sensed methodology for dust storms detection. Journal of Environmental Health Science and Engineering, 12, 1

Schepanski, K., Tegen, I., & Macke, A. (2012). Comparison of satellite based observations of Saharan dust source areas. Remote Sensing of Environment, 123, 90-97

Shahraiyni, H.T., Karimi, K., Nokhandan, M.H., & Moghadas, N.H. (2015). Monitoring of dust storm and estimation of aerosol concentration in the Middle East using remotely sensed images. Arabian Journal of Geosciences, 8, 2095-2110

Tarekegn, T.H., Haile, A.T., Rientjes, T., Reggiani, P., & Alkema, D. (2010). Assessment of an ASTER-generated DEM for 2D hydrodynamic flood modeling. International Journal of Applied Earth Observation and Geoinformation, 12, 457-465

Waggoner, D.G., & Sokolik, I.N. (2010). Seasonal dynamics and regional features of MODIS-derived land surface characteristics in dust source regions of East Asia. Remote Sensing of Environment, 114, 2126-2136

Webb, N.P., McGowan, H.A., Phinn, S.R., & McTainsh, G.H. (2006). AUSLEM (Australian Land Erodibility Model): A tool for identifying wind erosion hazard in Australia. Geomorphology, 78, 179-200

Webb, N.P., & Strong, C.L. (2011). Soil credibility dynamics and its representation for wind erosion and dust emission models. Aeolian Research, 3, 165-179

Yero, S.A., Hainin, M.R., & Yacoob, H. (2012). DETERMINATION OF SURFACE ROUGHNESS INDEX OF VARIOUS BITUMINOUS PAVEMENTS. International Journal of Research and Reviews in Applied Sciences, 13

Zhang, B., Tsunekawa, A., & Tsubo, M. (2008). Contributions of sandy lands and stony deserts to long-distance dust emission in China and Mongolia during 2000–2006. Global and Planetary Change, 60, 487-504

Zhou, Y., Chang, X., Ye, S., Zheng, Z., & Lv, S. (2015). Analysis on regional vegetation changes in dust and sandstorms source area: a case study of Naiman Banner in the Horqin sandy region of Northern China. Environmental Earth Sciences, 73, 2013-2025

Zobeck, T., Parker, N., Haskell, S., & Guoding, K. (2000). Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS. Agriculture, ecosystems & environment, 82, 247-259