نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد هیدروژئولوژی، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز

2 دانشجوی کارشناسی ارشد هیدروژئولوژی، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز

3 کارشناس آب‌‌های زیرزمینی، شرکت آب منطقه‌‌ای آذربایجان غربی

چکیده

افزایش روزافزون فعالیت‌‌های کشاورزی، صنعتی و توسعه شهری، باعث آلودگی و کاهش کیفیت منابع آب زیرزمینی در اکثر آبخوان‌‌ها شده است. این در حالی است که پاکسازی آب زیرزمینی پس از آلودگی بسیار پر هزینه و فرآیندی طولانی است و اغلب زمانی آلودگی تشخیص داده می‌‌شود که رفع آلودگی آبخوان تقریباً غیر ممکن است. یکی از روش‌‌های مناسب برای جلوگیری از آلودگی آب زیرزمینی، شناسایی مناطق آسیب‌‌پذیر آبخوان است. این پژوهش باهدف بررسی آسیب‌‌پذیری ذاتی آبخوان دشت اشنویه با استفاده از مدل‌‌های آسیب‌‌پذیری دراستیک و سینتکس انجام شد. برای تهیه هر دو مدل از هفت پارامتر هیدرولوژی و هیدروژئولوژی عمق تا سطح ایستابی، تغذیه خالص، محیط آبخوان، محیط خاک، تأثیر منطقه غیراشباع، هدایت هیدرولیکی و توپوگرافی استفاده شد. پس از تهیه لایه‌‌های هر یک از پارامترها در محیط جی‌‌ای‌‌اس، لایه‌‌ها باهم تلفیق شدند و نقشه نهایی آسیب-پذیری دشت تهیه گردید. برای حصول اطمینان از نتایج مدل‌‌های آسیب‌‌پذیری از داده‌‌های نیترات که در شهریور 1394 از 25 چاه کشاورزی برداشت‌شده بود استفاده شد. برای بهینه‌سازی و کارای بیشتر مدل‌‌ها، همبستگی بین هریک از پارامترها با مقادیر نیترات بررسی شد و طبق نتایج همبستگی و نظر کارشناسی وزن هر یک از پارامترهای مدل تغییر کرد و نقشه نهایی تهیه شد. مدل دراستیک‌‌اصلاحی همبستگی 3/76 درصد و مدل سینتکس‌‌اصلاحی همبستگی 56/67 درصد با مقادیر نیترات دارند. اندیس آسیب-پذیری دراستیک‌‌اصلاحی مقادیری بین 68 تا 191 و برای سینتکس‌‌اصلاحی 108 تا 224 به دست آمد. نتایج نشان داد که هر دو مدل دراستیک‌‌اصلاحی و سینتکس‌‌اصلاحی برای تعیین آسیب‌‌پذیری دشت اشنویه مناسب هستند و مدل دراستیک اصلاحی نسبت به مدل سینتکس اصلاحی نتایج بهتری را برای تعیین آسیب‌‌پذیری ذاتی این دشت نشان می‌‌دهد. براساس مدل‌‌های آسیب‌‌پذیری دراستیک و سینتکس مناطق مرکزی دشت داری بیشترین و مناطق جنوب غربی و حاشیه‌‌های دشت داری کمترین میزان پتانسیل آسیب‌‌پذیری است.

کلیدواژه‌ها

عنوان مقاله [English]

Vulnerability Assessment of Oshnavieh Plain Aquifer by SINTACS and DRASTIC Models

نویسندگان [English]

  • Asghar Asghari Moghaddam 1
  • Ali Adigozalpour 2
  • Abbas Mohammady 3

1 Professor in Hydrogeology, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.

2 M.Sc. Student in Hydrogeology, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.

3 Groundwater expert in West Azarbaijan Regional Water Authority, Iran.

چکیده [English]

This study carried out for considering the intrinsic vulnerability of Oshnavieh plain aquifer using from DRASTIC and SINTACS models with respect to increasing groundwater resources contaminations and quality deterioration by agricultural activities, industrial and urban development. Although, cleaning up of groundwater contamination is very costly and long process and often occurs when contamination is detected that decontamination of the aquifer is almost impossible. One of the methods for preventing groundwater pollution, identify areas vulnerable aquifer. For both models, seven hydrological and hydrogeological parameters such as depth to water table, net recharge, aquifer media, soil media, the impact of the unsaturated zone, hydraulic conductivity and topography were used. After preparing the layers of each of the parameters in the GIS, the layers have been combined together and the final map was prepared for the plain vulnerability. For ensuring from results of the vulnerability models nitrate data collected from 25 agricultural wells in September 2015 were used. For models optimization and efficiency, the correlation between each of the parameters with the values of nitrate was considered and according to the correlation results and expertise the model parameters were changed and the weight of each final map was prepared. Corrected DRASTIC and SINTACS models showed 76.3 and 67.56 percent correlation with nitrate values respectively. Vulnerability index obtained for corrected DRASTIC was from 68 to 191 and for the SINTACS from 108 to 224. The results showed that both Corrected DRASTIC and SINTACS models are appropriate to determine the vulnerability of Oshnavieh plain. The corrected DRASTIC and SINTACS model determines the intrinsic vulnerability of the plain better than the corrected SINTACS model. according to  DRASTIC and SINTACS vulnerability models have the highest potential vulnerability of Central Plains and the Southwest and Plains Margin the least amount of potential vulnerability.

کلیدواژه‌ها [English]

  • Vulnerability
  • Groundwater
  • Oshnavieh Plain
  • DRASTIC
  • SINTACS

آزاد شهرکی فخرالدین، عبدوالوحید آغاسی، آزاد شهرکی فرزاد. زارعی، علیرضا (1388)، ارزیابی پتانسیل و آنالیز حساسیت آسیب‌پذیری آب زیرزمینی دشت هشتگرد به روش دراستیک، مجله آب و فاضلاب، شماره 2، سال 1389، ص 61-70

اصغری مقدم اصغر (1389)، اصول شناخت آبهای زیرزمینی، انتشارات دانشگاه تبریز، ص 7

اصغری مقدم اصغر، فیجانی الهام، ندیری عطاالله (1388)، ارزیابی آسیب­پذیری آب زیرزمینی دشت­های بازرگان و پلدشت با استفاده از مدل دراستیک بر اساس GIS، مجله محیط شناسی، سال سی و پنجم، شماره 52، ص 55 تا 64.

خدایی کمال، شهسواری علی اکبر، اعتباری بهروز (1385)، ارزیابی آسیب­پذیری آبخوان دشت جوین به روش­های DRASTIC و GODS، مجله زمین‌شناسی ایران، 4، صص 73-87.

سازمان آب منطقه‌ای استان آذربایجان غربی (1393)، گزارش ارزیابی منابع آب دشت اشنویه

معروفی صفر، سلیمانی سامره، قبادی، محمد حسین، رحیمی قاسم، معروفی حسین (1391)، ارزیابی آسیب‌پذیری آبخوان دشت ملایر با استفاده از مدل‌های DRASTIC، SINTACS، SI، مجله پژوهش­های حفاظت آب و خاک، 19(3)، صص141-166

میرزاوند محمد، قاسمیه هدی (1393)، ارزیابی آسیب‌پذیری با استفاده از مدل دراستیک و تحلیل حساسیت تک پارامتری، مطالعه موردی: آبخوان دشت کاشان. فصلنامه بین المللی پژوهشی تحلیلی منابع آب و توسعه، سال چهارم، شماره (1)، صص 92-102

نیک­نام رامین، محمدی کورش، جوهری مجد وحید (1386)، ارزیابی آسیب‌پذیری آبخوان کرج – تهران با استفاده از روش دراستیک و منطق فازی، مجله تحقیقات منابع آب ایران،3(2)، صص 39-47.

Aller,  L. Bennet,  T. Leher, J.H. Petty, R.J. and Hackett, G., )1987(, DRASTIC: A  Standardized system for evaluating groundwater pollution potential using hydro- geological settings, Kerr Environmental Research Laboratory, U.S Environmental  Protection Agency  Report (EPA/600/2-87/035).

Almasira, M. N., (2008), Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine, Journal Environ. Manag, Volume 88: pp. 577-539.

Al-Adamat, R.A.N. Foster, S.M.J. Baban, (2003), Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC, Journal Applied Geography, 23, pp. 303-324.

Babiker, I.S. Mohammed, M.A.A. Hiyama, T. and Kato, K., (2005), A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan, Journal Science of the Total Environment volume 345: pp. 127-140.

Cashman P. M., and Preene, M., (2001), Groundwater lowering in construction:  a practical guide, USA, and Canada.

Civita, M., (1994), Le carte della vulnerabilita  degl acqiferi  all’inquinamento, Teoria & Practia (Aquifer vulenerability maps to Pollution) (in Italian), Pitagora  Ed,  Bologna, p 325.

Corniello, A., Ducci, D.,  and Napolitano,  P., (1997), Comparison between example in the Piana Campana, In Journal Engineering Geology and the Environment,  Balkema, Rotterdam, The Netherlands, pp. 1721- 1726,

Daly, D.,  and Drew, D., (1999), Irish Methodology for Karst aquifer protection. In: Beck, B.F., Pettit, A.J. and Herring, J.G. (eds.), Journal Hydrogeology and Engineering Geology of Sinkholes and Karst, Rotterdam, Balkema, pp. 267-272.

Fetter, C.W., (1990), Contaminant Hydrology, Prentice-Hall, Englewood Cliffs, NJ, pp. 604.

Foster, S.S., (1987), Fundamental concepts in aquifer vulnerability, pollution risk, and protection strategy, In van Duijvebooden, W., Van Waegeningh, H.G. (Eds), Vulnerability of Soils and Groundwater to Pollution. TNO Committee on Hydrological Research, The Hague, Proceedings, and Information, 38: pp 69-86.

Gogu, R.C., and Dassargues, A., (2000), Current and future challenges in groundwater vulnerability assessment using overlay and index methods, Environmental Geology, Volume 39: pp. 549-559.

Hamza, M.H., Added, A., Frances, A., and Rodriguez, R, (2007), Validite de1’application des methods de vulnerabilite DRASTIC, SINTACS et SI A 1’ etude de la pollution par les nitrates dans la nappe phreatique de Metalline-Ras Jebel-Raf(Nord- East Tunisien) C. R.  Gesci, Volume 339: pp.493-505.

Katta, B., A.F., Walid and A.R. Al Charideh, (2010), Groundwater vulnerability RISK method, Journal of Environmental Management, Volume 91, pp 1103-1110.

Nober, R.C. M., O. C. Rotunno Fiiho, W. J., Mansur, M. M. M., Nober and C. AN., Cosenza, (2007), Groundwater vulnerability and risk mapping using GIS, Modeling and a fuzzy logic tool, Journal of Contamination Hydrology, Volume 94, pp. 277-292.

Piscopo, G., (2001), Groundwater vulnerability map,  explanatory notes,  Castlereagh  Catchment, NSW,  Department of  Land and  Water Conservation, Australia.

Ribero, L., (2000), Desenvolvimento de um 1 ndic para avaliar a susceptibilidade, ERSHA-CVRM, pp. 8.

Stigter, T.Y. Ribeiro. L, and Carvaiho Dill, A. M. M.,  (2006), Evaluation of an intrinsic and a specific vulnerability assessment method in comparison With groundwater salinization and nitrate contamination level in two agriculture regions in the south of Portugal, Hydrogeo1 Journal, Volume 14: pp. 79-99.

Todd, P.K., (1980), Groundwater, Hydrology, Kluwer Academic Publisher, pp. 400.

Van Stemproot, D., Evert, L., and Wassenaar, L., (1993), Aquifer vulnerability index: a GIS compatible method for groundwater vulnerability mapping, Journal Canadian Water Resources. Volume 18: pp. 25-37.

Vrba, J., Zoporozec, A., (1994), Guidebook on mapping groundwater vulnerability, International Contribution for Hydrogeology, Heniz Heise, Hannover, Volume 16, pp. 131.