نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اردبیل (مغان)، سازمان تحقیقات، آموزش و ترویج کشاورزی

2 دانشیار، پژوهشکده تحقیقات حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی

3 کارشناس ارشد پژوهشی، بخش تحقیقات جنگل و مرتع، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اردبیل (مغان)، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

آلودگی منابع خاک به عناصر سمّی و سرطان‌زا یکی از مشکلات اصلی محیط زیست می‌باشد. منشاء‌های غیر متمرکز یکی از مهمترین منابع آلوده‌کننده هستند که در آن‌ها عناصر مختلف در اثر هوازدگی سنگ‌ها در محیط پراکنده می‌شوند. مناطق معدنی از منابع غیر متمرکز آلودگی هستند که در آن‌ها آزاد سازی، تمرکز و تخلیه برخی از عناصر باعث ایجاد آلودگی در منابع خاک شده و در نهایت چرخه زیستی را نیز آلوده می‌سازند. در این مقاله میزان بار آلودگی عناصر سمّی در 236 نمونه خاک جمع آوری شده در اطراف منطقه معدنی دوست بیگلو در شمال مشگین شهر مورد بررسی قرار گرفته است. شدت آلودگی خاک‌ها براساس شاخص آلودگی و فاکتور غنی‌سازی محاسبه شد. گروه بندی خاک‌ها به روش تحلیل عاملی و خوشه بندی صورت گرفت. عناصر مضر به دست آمده از تجزیه خاک‌های منطقه نسبت به مقادیر استاندارد و رهنمودهای بین المللی از غلظت بالایی برخوردارند. غلظت عناصر آرسنیک، مولیبدن، آنتیموان، روی، مس و قلع در خاک‌های منطقه بسیار بالا است (3-3430، 5/0-160، 21/0-97/6، 7/3-518، 10-748 و 5/0-4/11 mg/kg). در برخی از نمونه‌های خاک‌ منطقه، غلظت کروم، منگنز و کبالت نیز نگران کننده است (3-267، 27-4120 و 5/0-211 mg/kg). بر مبنای شاخص آلودگی پیشنهادی، 4/19 تا 7/66 درصد از نمونه‌های خاک‌ مناطق کانی‌سازی و دگرسان شده دوست بیگلو آلوده به عناصر فلزی سمّی هستند. تغییرات غلظت عناصر در خاک‌های منطقه زیاد است و در توزیع این عناصر هم عوامل شیمیایی (pH، درصد کربن آلی، غلظت آهن+ منگنز، آلومینیوم و گوگرد خاک) و هم فیزیکی (اندازه ذرات کوچکتر از 63 میکرومتر) تاثیر زیادی دارند. براین اساس باید استفاده از روش‌های پاکسازی و کنترل آلودگی در منطقه مورد تاکید قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Environmental assessment of contaminated soils in Dostbaiglou mine (north of Meshginshahr - Iran)

نویسندگان [English]

  • Reza Talaei 1
  • Hamidreza Peyrowan 2
  • Farzaneh Azimi Motem 3

1 Assistant Professor, Soil Conservation and Watershed Management Research Department, Ardabil Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Ardabil, Iran

2 Associate Professor, Soil Conservation and Watershed Management Research Institute, Agricultural Research, ‎Education and Extension Organization (AREEO), Tehran, Iran

3 MSc, Forests and Ranglands Research Department, Ardabil Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Ardabil, Iran

چکیده [English]

Contamination of soil with pathological and carcinogenic toxic elements presents a vitally important challenge for the environment. The dispersed contamination source is one of the important pollution sources, which different elements originate from weathering of rock and alterations zones and diffuse in the environment. The mine lands are considered as one of the dispersed contamination sources. In these locations, excavation, concentration and uncovering of some elements cause contamination of soil, which leads to contamination of the environment. This paper presents the pollution load of toxic elements in 236 soil samples collected around mining zone in north of Meshginshahr, northwest of Iran. Pollution intensity of the soils was calculated based on the pollution index and enrichment factor. Classification of the soils was done by using the factorial and cluster analysis. Soil samples collected in this study contain higher concentrations of harmful elements compared to the target and intervention limits set by international regulatory standards. Concentration of elements such as As (3-3430mg/kg), Mo (0.5-160mg/kg), Sb (0.21-97.6mg/kg), Pb (3.7-518mg/kg), Cu (10-748mg/kg) and Sn (0.5-11.4mg/kg) was found to be very high in the region soils. Some of the soil samples also have a worrying levels of Cr (3-267mg/kg), Mn (27-4120mg/kg) and Co (0.5-211mg/kg) concentrations. As per the pollution index, 19.4-66.7% of the soils on the mineralized and altered zones in the region are considered as contaminated with toxic elements. There is a high variation of concentration of elements in the soil samples. Distribution of the elements have been influenced heavily by both chemical (pH, organic carbon content (%), concentration of Fe + Mn, Al and S) and physical (grain size < 63µm) factors. Emphasis need to be put on control measures of pollution and remediation techniques in the study area.

کلیدواژه‌ها [English]

  • Contamination
  • soil
  • pathological
  • carcinogenic
  • elements
  • environment and alteration

اسماعیلی ساری عباس (1381). آلاینده­ها، بهداشت و استاندارد در محیط زیست، تهران، انتشارات نقش مهر، چاپ اول، صفحه 767.

جعفری حقیقی مجتبی (1382). روش­های تجزیه خاک، نمونه برداری و تجزیه­های مهم فیزیکی و شیمیایی با تاکید بر اصول تئوری و کاربردی، تهران، انتشارات ندای ضحی، چاپ اول، صفحه 236.

سازمان صنایع و معادن استان اردبیل (1374). پی جوئی و آثار یابی مقدماتی مواد معدنی در شمال مشگین شهر، مهندسین مشاور ژئوداد، صفحه 96.

سازمان صنایع و معادن استان اردبیل (1381). اکتشاف عمومی عناصر فلزی شمال غرب مشگین شهر، مهندسین مشاور زرناب اکتشاف، 139 صفحه.

سالاردینی علی اکبر (1382). حاصلخیزی خاک، تهران، انتشارات دانشگاه تهران، چاپ ششم، صفحه 428.

طلایی رضا؛ پیروان حمیدرضا؛ عظیمی مطعم فرزانه (1391). بررسی و تحقیق در زمینه اثر مینرالیزاسیون و زون­های آلتراسیون بر منابع آب و خاک در خروجی حوزه قره سو (استان اردبیل)، وزارت جهاد کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، پژوهشکده حفاظت خاک و آبخیزداری، گزارش نهایی پروژه تحقیقاتی، صفحه 270.

غضبان فریدون (1381). زمین شناسی زیست محیطی، تهران، انتشارات دانشگاه تهران، چاپ اول، صفحه 416.

همتی رسول؛ نصیری­فر عظیم؛ دولتی­مهر علی؛ شهبازی محمد؛ هژبرپور قاسم؛ آقایی سید غفور (1386). اطلس اقلیمی استان اردبیل با استفاده از سیستم اطلاعات جغرافیایی (GIS)، وزارت راه و ترابری، سازمان هواشناسی کشور، اداره کل هواشناسی استان اردبیل، گزارش نهایی پروژه مطالعاتی، صفحه 156.

 Abdullah, M.Z., Louis, V.C., Abas, M.T., (2015), Metal pollution and ecological risk assessment of Balok river sediment, Pahang Malaysia, American Journal of Environmental Engineering, 5(3A), pp. 1-7.

Abrahim, G.M.S., Parker, R.J., (2008), Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess, 136, pp. 227–238.

Adamu, C.I., Nganje, T.N., Aniekan, E., (2015), Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State, southeastern Nigeria. Environmental Nanotechnology, Monitoring & Management, 3, pp. 10–21.

Agnieszka, B., Tomasz, C., Jerzy, W., (2014), Chemical properties and toxicity of soils contaminated by mining activity, Ecotoxicology, 23, pp. 1234–1244.

Agnieszka, B., Tomasz, C., Jerzy, W., (2014), Chemical properties and toxicity of soils contaminated by mining activity, Ecotoxicology, 23, pp. 1234–1244.

Akinmosin, A., Osinowo, O.O., Oladunjoye, M.A., (2009), Radiogenic components of the Nigeria Tarsand Deposits, Earth Sci. Res. J., 13(1), pp. 64-73.

Ashraf, M.A., Maah, M.J., Yusoff, I., (2012), Chemical Speciation and Potential Mobility of Heavy Metals in the Soil of Former Tin Mining Catchment, The Scientific World Journal, volume 2012, Article ID 125608, 11 p.

Barize, D., Sterckeman, T., (2001), Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements, Sci. Total Environ., 264, pp.127-139.

Beek, J., Bolt, G.H., Bruggenwert, M.G.M., De Haan, F.A.M., Kamphorst, A., Novozamsky, I., Van Bremen, N., Brinkman, R., Zwerman, P.J., (1976), Soil chemistry, Basic elements, Volume. I, Elsevier Scientific Publishing Company, 280 p.

Bentellis, A., Azzoug, R., El Hadef El Okki, M., Rached, O., (2014), Trace elements pollution from an abandoned mine and factors affecting antimony concentrations in the Dahimine Wadi bank soils (northeast Algeria), Carpathian Journal of Earth and Environmental Sciences, 9(1), pp. 95-106.

Bhattacharya, A., Routh, J., Jacks, G., Bhattacharya, P., Mörth, M., (2006), Environmental assessment of abandoned mine tailings in Adak, Västerbotten district (northern Sweden), Applied Geochemistry, 21, pp. 1760–1780.

Bowen, H.J.M., (1979), Environmental chemistry of the elements, Academic Press, Londen, UK, 333 p.

Chira, I., Damian, G., Chira, R., (2014), Spatial distribution of heavy metals in the soils of Băiuţ area, Maramureş County, Romania, Carpathian Journal of Earth and Environmental Sciences, 9(1), pp. 269-278.

Colin, B., (1995), Environmental Chemistry, New York, Freeman and Company, 736 p.

Covelli, S., Fontolan, G., (1997), Application of a normalization procedure in determining regional geochemical baselines, Environ, Geol., 30, pp. 34–45.

Daldoul, G., Souissi, R., Souissi, F., Jemmali, N., Chakroun, H.K., (2015), Assessment and mobility of heavy metals in carbonated soils contaminated by old mine tailings in North Tunisia, Journal of African Earth Sciences, 110, pp. 150–159.

De Temmerman, L.O., Hoenig, M., Scokart, P.O., (1984), Determination of Normal levels and upper limit values of trace elements in soils, Zig. Pflanz. Bodenkunde, 147, pp. 687-694.

Donald, L.S., (1995), Environmental soil chemistry, London, Academic Press, 267p.

Fashola, M.O., Ngole-Jeme, V.M., Babalola, O.O., (2016), Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance, Int. J. Environ. Res. Public Health, 13, pp. 1-20.

Favas, P.J.C., Pratas, J., Gomes, M.E.P., Cala, V., (2011), Selective chemical extraction of heavy metals in tailings and soils contaminated by mining activity: Environmental implications, Journal of Geochemical Exploration, 111, pp. 160–171.

Fergusson, L., (1985), The heavy elements: Chemistry, environmental impact, and health effects, Oxford, Pergamon Press, 614 p.

Gbaruko, B.C, Igwe, J.C., (2007), Tungsten: Occurrence, chemistry, environmental and health exposure issues, Global Journal of Environmental Research, 1(1), pp. 27-32.

Gupta, A.K., Sinha, S., (2006), Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: selection of extractant for metal bioavailability, J. Hazard. Mater., B136, pp. 371–378.

Gustafsson, J.P., Jacks, G., (1995), Arsenic geochemistry in forested soil profiles as revealed by solid-phase studies, Appl. Geochem., 10, pp. 307–316.

Hamzah, Z., Saat, A., Wood, A.K., Abu Bakar, Z., (2011), Sedimentation, heavy metals profiles and cluster analysis of a former Tin Mining Lake, International Journal of Environmental Science and Development, 2(6), pp. 48-453.

Horckmans, L., Swennen, R., Deckers, J., Maquil, R., (2005), Local background concentrations of trace elements in soils: a case study in the Grand Duchy of Luxembourg, Catena, 59, pp. 279-304.

Horowitz, A.J., (1991), A Primer on Sediment-trace Element Chemistry, Chelsea, Lewis Publishing Co., 136 p.

Jung, M.C. (2001), Heavy metal contamination of soils and waters in and around the Imcheon Au–Ag mine, Korea, Appl. Geochem., 16, pp. 1369–1375.

Kabata-Pendias, A., (2004), Soil-plant transfer of trace elementsan environmental issue. Geoderma, 122, pp. 143–149.

Kabata-Pendias, A., Pendias, H., (2001), Trace Elements in Soils and Plants, Boca Raton, Florida, CRC Press, 520 p.

Keshav Krishna, A., Rama Mohan, K., Murthy, N.N., Periasamy, V., Bipinkumar, G., Manohar, K., Srinivas Rao, S., (2013), Assessment of heavy metal contamination in soils around chromite mining areas, Nuggihalli, Karnataka, India. Environ Earth Sci., 70, pp. 699–708.

Klassen, R.A., (1998), Geological factors affecting the distribution of trace metals in glacial sediments of central Newfound-land, Environ, Geol., 33(2/3), pp. 154-169.

Krauskopf, K.P., Dannis, K.B., (1995), Introduction to geochemistry, New York, McGraw-Hill, 640 p.

Land, M., Thunberg, J., Öhlander, B., (2002), Trace metal occurrence in a mineralised and a non-mineralised spodosol in northern Sweden, J. Geochem. Explor., 75, pp. 71–91.

Likuku, A.S., Mmolawa, K.B., Gaboutloeloe, G.K., (2013), Assessment of heavy metal enrichment and degree of contamination around the copper-nickel mine in the Selebi Phikwe Region, Eastern Botswana, Environment and Ecology Research, 1(2), pp. 32-40.

Lim, H.S., Lee, J.S., Chon, H.T., Sager, M., (2008), Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea, Journal of Geochemical Exploration, 96, pp. 223–230.

Marg, B.Z., (2011), Hazardous metals and minerals pollution in India: sources, toxicity, and management, A Position Paper, Indian National Science Academy, New Delhi, 27 p.

Miller, J.R., Hudson-Edwards, K.A., Lechler, P.J., Preston, D., Macklin, M.G., (2004), Heavy metal contamination of water, soil and produce within riverine communities of the Rio Plicomayo basin, Bolivia, Science of the Total Environment, 320(2), pp. 189-209.

Mohiuddin, K.M., Ogawa, Y., Zakir, H.M., Otomo, K., Shikazono, N., (2011), Heavy metals contamination in water and sediments of the polluted urban river in developing country, International Journal of Environmental Science and Technology, 8, pp. 723-736.

Mohiuddin, K.M., Zakir, H.M., Otomo, K., Sharmin, S., Shikazono, N., (2010), Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river, International Journal of Environmental Science and Technology, 7, pp. 17-28.

Moreno, T., Oldroyd, A., Mcdonald, I., Gibbons, W., (2007), Preferential fractionation of trace metals-metalloids into PM10 resuspended from contaminated gold mine tailings at Rodalquilar, Spain, Water Air Soil Pollut, 179, pp. 93–105.

Nagyovά, I., Melichovά, Z., Komadelovά, T., Bohaάč, P., Andrάš, P., (2013), Environmental assessment of impacts by old copper mining activities – a case study at Špania Dolina Starohorské MTS., Slovakia, Carpathian Journal of Earth and Environmental Sciences, 8(4), pp. 101-108.

Odukoya, A.M., Abimbola, A.F., (2010), Contamination assessment of surface and groundwater within and around two dump sites, International Journal of Environmental Science and Technology, 7, pp. 367-376.

Öhlander, B., Thunberg, J., Land, M., Höglund, L.O., Quishang, H., (2003), Redistribution of trace metals in a mineralized spodosol due to weathering, Liikavaara, northern Sweden, Appl. Geochem., 18, pp. 883-899.

Parizanganeh, A., Hajisoltani, P., Zamani, A., (2010), Assessment of heavy metal pollution in surficial soils surrounding Zinc Industrial Complex in Zanjan-Iran, Procedia Environmental Sciences, 2, pp. 162–166.

Perlatti, F., Ferreira, T.O., Romero, R.E., Costa, M.C.G., Otero, X.L., (2015), Copper accumulation and changes in soil physical-chemical properties promoted by native plants in an abandoned mine site in northeastern Brazil: Implications for restoration of mine sites, Ecological Engineering, 82, pp. 103-111.

Pourret, O., Lange, B., Bonhoure, J., Colinet, G., Decrée, S., Mahy, G., Séleck, M., Shutcha, M., Faucon, M.P., (2016), Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo), Applied Geochemistry, 64, pp. 43-55.

Article I.                           Pourret, O., Lange, B., Bonhoure, J., Colinet, G., Decrée, S., Mahy, G., Séleck, M., Shutcha, M., Faucon, M.P., (2016), Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo), Applied Geochemistry,  64, pp. 43-55.

Rodríguez, L., Gómez, R., Sánchez, V., Alonso-Azcárate, J., (2015), Chemical and plant tests to assess the viability of amendments to reduce metal availability in mine soils and tailings, Environ Sci Pollut Res, Published online: 15 March 2015, 9 p.

Rogan, N., Serafimovski, T., Dolenec, M., Tasev, G., Dolenec, T., (2009), Heavy metal contamination of paddy soils and rice (Oryza sativa L.) from Kočani Field (Macedonia), Environ Geochem Health, 31(4), pp. 439-51.

Sakan, S., Gržetić, I., Dordević, D., (2007), Distribution and fractionation of heavy metals in the Tisa (Tisza) River sediments, Environmental Science and Pollution Research, 14, pp. 229-236.

Salomons, W., Forstner, U., (1984), Metals in the Hydrocycle, New York, Springer-Verlag, 349 p.

Solgi, E., Parmah, J., (2015), Analysis and assessment of nickel and chromium pollution in soils around Baghejar Chromite Mine of Sabzevar Ophiolite Belt, Northeastern Iran. Trans. Nonferrous Met. Soc. China, 25, pp. 2380-2387.

Solgi, E., Parmah, J., (2015), Analysis and assessment of nickel and chromium pollution in soils around Baghejar Chromite Mine of Sabzevar Ophiolite Belt, Northeastern Iran. Trans. Nonferrous Met. Soc. China, 25, pp. 2380-2387.

Sun, Y., Xie, Z., Li, J., Chen, Z., Naidu, R., (2006), Assessment of toxicity of heavy metal contaminated soils by the toxicity characteristic leaching procedure, Environ Geochem Health, 28, pp.73–78.

Swartjes, F.A., (1999), Risk-based assessment of soil and groundwater quality in the Netherlands: standards and remediation urgency, Risk Anal., 19, pp. 1235-1249.

Tajam, J., Kamal, M.L., (2013), Marine environment risk assessment of Sungai Kilim, Langkawi, Malaysia: Heavy metal enrichment factors in sediments as assessment indexes, International Journal of Oceanography, 2013, pp. 1-6.

Tanji, K.K., (1990), Agricultural salinity assessment and management, ASCE Manuals and Reports on Engineering Practice, Number 71, USA, 164 p.

Truta, E., Vochita, G., Zamfirache, M.M., Olteanu, Z., Rosu, C., (2013), Copper-induced genotoxic effects in root meristems of Triticum Aestivuml. Cv. Beti, Carpathian Journal of Earth and Environmental Sciences, 8(4), pp. 83-92.

Uddin, M.K., (2017), A review on the adsorption of heavy metals by clay minerals, with a special focus on the past decade, Chemical Engineering Journal,  308, pp. 438-462.

Violante, A., Cozzolino, V., Perelomov, L., Caporale, A.G., Pigna, M., (2010), Mobility and bioavailability of heavy metals and metalloids in soil environments, Journal of Soil Science and Plant Nutrition, 10(3), pp. 268-292.

Wahsha, M., Bini, C., Fontana, S., Wahsha, A., Zilioli, D., (2012), Toxicity assessment of contaminated soils from a mining area in Northeast Italy by using lipid peroxidation assay, Journal of Geochemical Exploration, 113, pp. 112-117.

Wang, X., Liu, Y., Zeng, G., Chai, L., Xiao, X., Song, X., Min, Z., (2008), Pedological characteristics of Mn mine tailings and metal accumulation by native plants, Chemosphere, 72, pp. 1260-1266.

Wedepohl, K.H., (1995), The composition of the continental crust. Geochim, Cosmochim. Acta, 59, pp. 1217-1232.

Yagodin, B.A., (1984), Agricultural Chemistry, 1 edition, Moscow, Mir Publishers, volume 1, Translated from the Russian by Vopyan V.G., 375 p.

Zandsalimi, S., Karimi, N., Kohandel, A., (2011), Arsenic in the soil, vegetation and water of a contaminated region, International Journal of Environmental Science and Technology, 8, pp. 331-338.

Zobrist, J., Sima, M., Dogaru, D., Senila, M., Yang, H., Popescu, C., Roman, C., Bela, A., Frei, L., Dold, B., Balteanu, D., (2009), Environmental and socioeconomic assessment of impacts by mining activities - a case study in the Certej River catchment, Western Carpathians, Romania, Environmental Science and Pollution Research, 16, pp. 14-20.

Zogaj, M., Paçarizi, M., Düring, R.A., (2014), Spatial distribution of heavy metals and assessment of their bioavailability in agricultural soils of Kosovo, Carpathian Journal of Earth and Environmental Sciences, 9(1), pp. 221-230.

Victor L., (1991), Air temperature and humidity and a human comfort index of some city parks of Mexico City, International Journal of Biometeorology, 35(1), pp 24–28.

Wanielista, M.P., (1997), Hydrology Water Quantity and Water Quality Control, University of Central Florida, 565 p.