تحلیل و محاسبه ابزارهای موردنیاز برای حفاظت کیفی آب بمنظور کمینه کردن مخاطرات وارده به محیط‌زیست

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران، گروه مهندسی عمران، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استادیار گروه مهندسی عمران، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 دانشیار گروه مهندسی عمران، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

بروز عواملی مانند کاهش نزولات جوی، رشد جمعیت و پیشرفت صنعت اهمیت توجه به مدیریت صحیح کیفی منابع آب را دوچندان کرده است. منابع ورود آلاینده به رودخانه ها از منظرهای مختلفی تقسیم بندی می شوند. در این تحقیق مدیریت آلاینده های کنترل پذیر و غیرقابل کنترل مدنظر قرار گرفته شد. برای مدیریت وکنترل خسارات ناشی از هریک از انواع این آلاینده ها از ابزار کیفی مشخصی استفاده گردید. ظرفیت جذب در هنگام ورود آلودگی قابل کنترل و جریان رقیق ساز ابزار پیشنهادی این تحقیق برای مدیریت آلودگی غیرقابل کنترل می باشد. برای تحلیل و محاسبه ابزارهای کیفی مذکور از فرایند شبیه سازی بوسیله حل تحلیلی معادله انتقال-پخش آلودگی استفاده شد. منطقه مطالعاتی درنظر گرفته شده در این تحقیق یک منطقه با مشخصات مشخص می‌باشد که توسط پژوهش‌های پیشین بسیاری مورد مطالعه قرار گرفته است. پارامترهای متوسط مساحت غلظت غیرمجاز (¯(c_a ))، مسافت آسیب دیده (X) و زمان تماس غلظت غیرمجاز آلودگی با رودخانه (T) بعنوان شاخص های تاثیرگذار در محاسبه ابزارهای کیفی، در هر حلقه فرایند شبیه‌سازی محاسبه شدند. نتایج نشان داد که تغییرات 1/94 درصدی در دبی سیستم رودخانه-مخزن باعث 3/99 درصد تغییر در مقدار ظرفیت جذب محاسبه شده، می گردد. همچنین نتایج نشان می دهد با بکارگیری جریان رقیق ساز مناسب، مقادیر 10 و 20 تن آلاینده ناگهانی ورودی به مقادیر غلظت مجاز 5/0 و 1 میلی گرم بر لیتر در طول رودخانه رسیدند. در این فرایند مقادیر پارامترهای حیاتی کیفی رودخانه شامل (c_a ) ̅، X و T، به ترتیب تغییرات 6/96، 2/92 و 7/53 درصدی را نشان دادند.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis and Calculation of the Required Tools for Water Quality Protection in order to Minimize Environmental Hazards

نویسندگان [English]

  • Mohsen Dehghani Darmian 1
  • Gholamreza Azizyan 2
  • Seyed Arman Hashemi Monfared 3
1 Ph. D. Candidate, Dept. of Civil Engineering, Faculty of Shahid Nikbakht Engineering, University of Sistan and Baluchestan, Zahedan, Iran.
2 Assistant Professor, Dept. of Civil Engineering, Faculty of Shahid Nikbakht Engineering, University of Sistan and Baluchestan, Zahedan, Iran.
3 Associate Professor, Dept. of Civil Engineering, Faculty of Shahid Nikbakht Engineering, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

Occurrence of factors such as decreasing atmospheric precipitation, population growth and industry progress has increased the importance of paying attention to the proper quality management of water resources. Pollution sources are categorized in different aspects. In this research, controllable and uncontrollable pollutant management is considered. To manage and control the damages caused by each of these types of pollutants, a certain qualitative tool is employed. Assimilation capacity is suggested when the pollution source is controllable and dilution flow is the proposed tool of this investigation to uncontrollable pollution management. To analyze and calculate the above mentioned qualitative tools, the simulation process is used by analytical solution of the advection-diffusion equation. The case study considered in this research is an area with specific characteristics, which has been investigated by many previous researches. Efficient indices in determination of qualitative tools including mean area of unallowable concentration (¯(c_a )), affected distance (X) and duration of unallowable pollution concentration contact with river (T) were calculated in each simulation process loop. The results demonstrated that 94.1% variation of river-reservoir flow discharge can change the assimilation capacity up to 99.3%. Moreover, by applying a suitable dilution flow, 10 and 20 tons of sudden contaminants arrived at the permitted concentrations of 0.5 and 1 mg / l over the river. In this process, values of the crucial quality parameters of the river ((c_a ) ̅، X و T) change up to 96.6%, 92.2% and 53.7%, respectively.

کلیدواژه‌ها [English]

  • Water quality management
  • Abrupt pollution control
  • Assimilation capacity
  • Dilution flow
  • Quality simulation model

هاشمی منفرد سید آرمان، دهقانی درمیان محسن، پیرزاده بهاره، اژدری مقدم مهدی. (1395). پیش بینی کیفیت آب در جریان های یک بعدی به کمک تابع انتقال آلودگی جدید و اصلاح معیار همگرایی، مجله پژوهش‌های حفاظت آب و خاک، (2)23: 147-162.
مقیمی نژاد سمیه، ابراهیمی کیومرث، کراچیان رضا. (1396). مطالعه تغییرات فصلی خودپالایی رودخانه کارون، نشریه مهندسی عمران امیرکبیر، (4)49: 621-634.

Abbasi SA (1976) Extraction and spectrophotometric determination of vanadium (V) with N-[p-N, Ndimethylanilino-3- methoxy 2-naphtho] hydroxamic acid. Anal Chem 48(4):714-717.

Abbasi SA, Soni R (1983) Stress-induced enhancement of reproduction in earthworm Octochaetus pattoni exposed to chromium (VI) and mercury (II) - implications in environmental management. Int J Environ Stud 22(1):43-47.

Abbasi SA, Soni R (1984) Teratogenic effects of chromium (VI) in environment as evidenced by the impact on larvae of amphibian Rana tigrina: Implications in the environmental management of chromium. Int J Environ Stud 23(2):131-137.

Abbasi T, Abbasi SA (2012) Water-Quality Indices Elsevier.

Ali, U., Mahmood, A., Syed, J.H., Li, J., Zhang, G., Katsoyiannis, A., Jones, K.C., Malik, R.N., (2015a) Assessing the combined influence of TOC and black carbon in soil–air partitioning of PBDEs. Environmental Pollution. 201, 131-140.

Ali, U., Riaz, R., Sweetman, A.J., Jones, K.C., Li, J., Zhang, G. and Malik, R.N., (2018b) Role of black carbon in soil distribution of organochlorines in Lesser Himalayan Region of Pakistan. Environmental Pollution, 236, pp.971-982.

Ali, U., Sweetman, A.J., Jones, K.C., Malik, R.N., (2018a) Higher atmospheric levels and contribution of black carbon in soil-air partitioning of organochlorines in Lesser Himalaya. Chemosphere. 191, 787-798.
Ali, U., Sweetman, A.J., Riaz, R., Li, J., Zhang, G., Jones, K.C. and Malik, R.N., (2018c) Sedimentary black carbon and organochlorines in Lesser Himalayan Region of Pakistan: Relationship along the altitude. Science of The Total Environment, 621, pp.1568-1580.

Ali, U., Syed, J.H., Mahmood, A., Li, J., Zhang, G., Jones, K.C., Malik, R.N., (2015b) Influential role of black carbon in the soil–air partitioning of polychlorinated biphenyls (PCBs) in the Indus River Basin, Pakistan. Chemosphere. 134, 172–180.

Cairns Jr (1977) Aquatic ecosystem assimilative capacity. Fisheries 2:5-13.

Colman JA, Massey AJ, Levin SB (2011) Determination of Dilution Factors for Discharge of Aluminum Containing Wastes. Public Water-Supply Treatment Facilities into Lakes and Reservoirs in Massachusetts. Prepared in cooperation with the Massachusetts Department of Environmental Protection Scientific.

De Andrade LN, Mauri GR, Mendonça ASF (2013) General multi-objective model and simulated annealing algorithm for waste-load allocation. J Water Resour Plann Manage 139(3).

Dehghani Darmian, M., Hashemi Monfared, S.A., Azizyan, G., Snyder, S.A. Giesy, J.P., 2018. Assessment of tools for protection of quality of water: Uncontrollable discharges of pollutants. Ecotox Environ Safe 161, 190-197.

De Smedt F, Brevis W, Debels P (2005) Analytical solution for solute transport resulting from instantaneous injection in streams with transient storage. J Hydrology. 315:25-39.

Farhadian M, Bozorg Haddad O, Seifollahi Aghmiuni S, Loáiciga AH (2014) Assimilative capacity and flow dilution for water quality protection in rivers. J Hazard Toxic Radioact Waste 19(2).

Fischer HB (1975) Discussion of simple method for predicting dispersion in streams. By McQuiver, R. S. and Keefer, T. N. J Environ Eng 101:453–455.

Glasoe S, Steiner F, Budd W, Young G (1990) Assimilative capacity and water resource management: four examples from the United States. landscape and urban planning 19:17-46.

Hashemi Monfared SA, Dehghani Darmian M (2016) Evaluation of Appropriate Advective Transport Function for One-Dimensional Pollutant Simulation in Rivers. Int J Environ Res 10 (1):77-84.

Hashemi Monfared, S.A., Dehghani Darmian, M., Snyder, S.A., Azizyan, G., Pirzadeh, B., Azhdary Moghaddam, M., 2017. Water Quality Planning in Rivers: Assimilative Capacity and Dilution Flow. Bull Environ Contam Toxicol, 99 (5), 531-541.

Hashemi Monfared SA, Mirbagheri SA, Sadrnejad SA (2014) A three-dimensional, integrated seasonal separate advection­­­—diffusion model (ISSADM) to predict water quality patterns in the chahnimeh reservoir. Environ Model Softw 19(1):71-83.

Karamouz M, Kerachian R, Mahmoodian M (2003) Seasonal waste-load allocation model for river water quality management: Application of sequential dynamic genetic algorithms. World Water and Environmental Resources Congress, ASCE, Reston, VA.

Khorsandi, M., Bozorg Haddad, O., Marino, M., (2014) Application of Data-Driven and Optimization methods in Identification of Location and Quantity of Pollutants. J. Hazard. Toxic Radioact. Waste. 04014031(9).

Keeling AM (2007) M, Charting marine pollution science: oceanography on Canada’s Pacific coast, 1938-1970 33:403-428.

Landis WG (2008) Defining Assimilative Capacity Application of Assimilative Capacity to the TMDL Process. USEPA (1999) Protocol for Developing Nutrient TMDLs, Elsevier B.V. All rights reserved. 264-268.

Mahmoudi, N., Orouji, H., Fallah-Mehdipour, E., (2016) Integration of Shuffled Frog Leaping Algorithm and Support Vector Regression for Prediction of Water Quality Parameters. Water Resour Manage. 30(7), 2195-2211.

GESAMP. (1986) Environmental capacity. An approach to marine pollution preventation. No. 30.

Seo IW, Cheong TS (1998) Predicting longitudinal dispersion coefficient in natural streams. J Hydraul Eng 124(1).

Shokri A, Bozorg Haddad O, Marino M (2014) Multi-Objective Quantity–Quality Reservoir Operation in Sudden Pollution. Water Resour Manage 28:567-586.

Spanou M, Chen D (2000) An object-oriented tool for the control of point-source pollution in river systems. Environ Model Softw 15:35-54.

 The United Nations Conference on the Human Environment, having met at Stockholm from 5 to 16 June 1972.

van Genuchten MTh, Alves WJ (1982) Analytical solutions of the one-dimensional convective-dispersive solute transport equation. U.S. Department of Agriculture, Technical Bulletin, 1661:1-151.

Wu, X., Wang, S., Chen, H., Jiang, Z., Chen, H., Gao, M., Bi, R., Klerks, P.L., Wang, H., Luo, Y. and Xie, L., (2017) Assessment of metal contamination in the Hun River, China, and evaluation of the fish Zacco platypus and the snail Radix swinhoei as potential biomonitors. Environmental Science and Pollution Research, 24(7), pp.6512-6522.

Zhang, K., Su, F., Liu, X., Song, Z., Feng, X., (2017) Heavy metal concentrations in water and soil along the Hun River, Liaoning, China. Bull Environ Contam Toxicol, 99:391–398.