کاربرد آنالیز فرکتال سطحی (SFA) در تحلیل ناهنجاری های سطحی و رابطه آن با تغییرات زونهای مورفوتکتونیک در حاشیه کمربند زاگرس مرتفع (HZB)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ژئومورفولوژی، دانشگاه حکیم سبزواری، سبزوار

2 دانشیار ژئومورفولوژی، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار

3 استاد زمین شناسی، دانشگاه پادوا، ایتالیا

4 استادیار سنجش از دور، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار

5 استاد ژئومورفولوژی، دانشکده جغرافیا و علوم محیطی دانشگاه حکیم سبزواری، سبزوار

چکیده

 هندسه فرکتال روشی برای توصیف کمی ویژگی خود متشابهی یا خود الحاقی در زمین­ریخت­های پیچیده و توضیح پیچیدگی‌ها و ناهمواری‌های سطحی است. در این مطالعه از روش تحلیل فرکتال سطحی در غالب یک مدل سلولی به روشتقسیم‌بندی پوششی استفاده شد. نتایج نشان داد فرایندهای زمین‌شناسی و زمین ریخت شناسی باعث تغییر ویژگی بعد فرکتال زمین ریخت­ها می‌شوند. تغییر مرزهای سنگ شناسی و گسل‌ها بر تغییرات بعد فرکتال اثر می‌گذارند و نحوه تأثیرگذاری آن‌ها با توجه به شرایط ناهمواری مثل بسامد، دامنه و جنس سازندها متفاوت است. در واحدهای لیتولوژیک با سازندهای سخت آهکی، بعد فرکتال پایین است و در سازندهای سست آبرفتی بعد فرکتال افزایش پیدا می‌کند. فراوانی آبراهه‌ها و حاشیه آن‌ها نیز بر بعد فرکتال تأثیر می‌گذارد، همچنین همگنی واحدهای سنگ‌شناسی باعث کاهش بعد فرکتال می‌شود. در این مطالعه نیز کمترین بعد فرکتال مربوط به واحدهای یکپارچه آهک اوربیتولین دار مزوزوئیک در مرز بین دو زون ساختاری سنندج سیرجان و زاگرس مرتفع است. ولی سازندهای نا مقاوم و حساس به فرسایش کواترنری باعث افزایش بعد فرکتال می‌شوند. تناوب لایه‌های سخت و سست نیز در مقیاس محلی بر بعد فرکتال مؤثر است همچنین ارتفاعات نسبت به زمین‌های پست بعد فرکتال پایین‌تری دارند. بین بعد فرکتال و ارتفاع به شکل کلی رابطه معکوس دیده می‌شود و این رابطه در مورد شاخص زبری ناهمواری نیز در این حوضه وجود دارد. نتایج این تحقیق نشان داد، تغییرات بعد فرکتال سطح به مجموعه‌ای از عوامل سنگ شناسی، تکتونیکی و ژئومورفولوژیکی وابسته است، همچنین در مناطق پیچیده توپوگرافی، بررسی تغییرات بعد فرکتال میتواند در آشکار سازی و بررسی ناهنجاری های سطحی زمین، ابزار مفید و موثری باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Applying Surface Fractal Analysis (SFA) to the analysis of surface anomalies and its relation with changes in morphotectonic zones in the margin of the High Zagros Belt (HZB)

نویسندگان [English]

  • Mahnaz Shiran 1
  • MohammadAli Zangane Asadi 2
  • Paolo Mozzi 3
  • Hamed Adab 4
  • Abolghasem Amirhmadi 5
1 PhD Student of Geomorphology, Department of Geography and Environmental science, University of Hakim Sabzevari, Sabzevar, Iran
2 Associate Professor of Geomorphology, Faculty of Geography and Environmental science, University of Hakim Sabzevari, Sabzevar, Iran
3 Professor of Geology, Faculty of Geosciences, Università degli Studi di Padova, Padova, Italy
4 Assistant Professor of remote sensing, Faculty of Geography and Environmental science, University of Hakim Sabzevari, Sabzevar, Iran
5 Professor of Geomorphology, Faculty of Geography and Environmental science, University of Hakim Sabzevari, Sabzevar, Iran
چکیده [English]

Fractal geometry is a method for describing a self-similar or a self-affine property in complex landforms and explanation of surface complexities and roughness. In the present study, the surface fractal dimensions (SFDs) were investigated by a cellular model by covering the divider method. Results indicated that geological and geomorphological processes change the character of the fractal dimension of the landforms. Changes in lithologic boundaries and faults influence changes in the fractal dimension and their mode of influence vary according to the topographic characters such as frequency, amplitude, and types of formations. In lithologic units with hard limestone formations, the fractal dimension is low, while in alluvial formations, the fractal dimension increases. The drainage network density and tributaries margins affect the fractal dimension. Moreover, homogeneity of the lithologic units decreases the fractal dimension. In this study, the lowest fractal dimension is associated with the integrated units of Mesozoic orbitolina limestones on the border of the two structural zones of Sanandaj-Sirjan and High Zagros belt. However, friable and sensitive to erosion formations of the quaternary increase the fractal dimension. The succession of the hard and friable layers is effective on the local scale on the fractal dimension. Furthermore, mountains have lower fractal dimensions than lowlands. Generally, there is an inverse relationship between the fractal dimension and elevation and this relationship there is about the roughness index in the basin. The results illustrated that changes in the surface fractal dimension were dependent on a set of lithologic, tectonic, and geomorphologic factors. Also in complex topographic zones investigation of changes in the fractal dimension can be a useful and effective instrument for detecting and survey of the surface anomalies.

کلیدواژه‌ها [English]

  • Surface Fractal Analysis
  • Morphotectonic
  • Surface Anomalies
  • High Zagros Belt

علمیزاده، هیوا، ماه پیکر، امید (1396). بررسی نظریه فرکتال در رودخانه زرینه رود با استفاده از روش شمارش جعبه ای، مجله فضای جغرافیایی، جلد 17، شماره 59، صص 270-255.

علی­پور رضا، پورکرمانی محسن، زارع مهدی، اسپندار رادین (1389). استخراج اتوماتیک خطواره های مرتبط با زون گسلی جوان اصلی زاگرس در جنوب لرستان و مقایسه آن با برداشت های صحرایی، مجله علوم پایه دانشگاه آزاد اسلامی، شماره 77، صص 184-173.

مقصودی، مهران، شایان، سیاوش، گل علیزاده، موسی، شریفی کیا، محمد، نوربخش، سید فاطمه (1395). تحلیل فضایی لندفرمهای بادی با استفاده از نظریه فرکتالی، مجله تحقیقات جغرافیای طبیعی، جلد 48، شماره 2، صص 231-245.

Bi, L., He, H., Wei, Z., & Shi, F. (2012). Fractal properties of landforms in the Ordos Block and surrounding areas, China. Geomorphology175, 151-162.

Chase, C. G. (1992). Fluvial land sculpting and the fractal dimension of topography. Geomorphology, 5(1-2), 39-57.

Clarke, K. C. (1986). Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Comp. Geosci., 12(5), 713-722.

Culling, W. E. H., & Datko, M. (1987). The fractal geometry of the soil—covered landscape. Earth Surface Processes and Landforms, 12(4), 369-385.

Faghih, A., & Nourbakhsh, A. (2015). Implication of surface fractal analysis to evaluate the relative sensitivity of topography to active tectonics, Zagros Mountains, Iran. Journal of Mountain Science12(1), 177.

Flores-Prieto, E., Quénéhervé, G., Bachofer, F., Shahzad, F., & Maerker, M. (2015). Morphotectonic interpretation of the Makuyuni catchment in Northern Tanzania using DEM and SAR data. Geomorphology, 248, 427-439.

Fox, C. G., & Hayes, D. E. (1985). Quantitative methods for analyzing the roughness of the seafloor. Reviews of Geophysics, 23(1), 1-48.

Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., & Tyler, D. (2002). The national elevation dataset. Photogrammetric engineering and remote sensing68(1), 5-32.

Gilbert, L. E. (1989). Are topographic data sets fractal Pure and Appl. Geophysics131(1), 54-66.

Hjelmfelt Jr, A. T. (1988). Fractals And The River Length Catchment Area Ratio 1. Jawra Journal of the American Water Resources Association, 24(2), 455-459.

Huang, J., & Turcotte, D. L. (1989). Fractal mapping of digitized images: application to the topography of Arizona and comparisons with synthetic images. Journal of Geophysical Research: Solid Earth, 94(B6), 7491-7495.

Iwahashi, J., & Pike, R. J. (2007). Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology86(3), 409-440.

Koike, K., Nagano, S., & Kawaba, K. (1998). Construction and analysis of interpreted fracture planes through a combination of satellite-image derived lineaments and digital elevation model data. Computers & Geosciences, 24(6), 573-583.

La Barbera, P., & Rosso, R. (1989). On the fractal dimension of stream networks. Water Resources Research25(4), 735-741.

Laverty, M. (1987). Fractals in karst. Earth Surface Processes and Landforms12(5), 475-480.

Lee, T. H., & Moon, W. M. (2002). Lineament extraction from Landsat TM, JERS-1 SAR, and DEM for geological applications. In Geoscience and Remote Sensing Symposium, 2002. IGARSS'02. 2002 IEEE International (Vol. 6, pp. 3276-3278). IEEE.

Leech, D. P., Treloar, P. J., Lucas, N. S., & Grocott, J. (2003). Landsat TM analysis of fracture patterns: a case study from the Coastal Cordillera of northern Chile. International Journal of Remote Sensing, 24(19), 3709-3726.

Logan, T. A., Nicoll, J., Laurencelle, J., Hogenson, K., Gens, R., Buechler, B., ... & Guritz, R. (2014, December). Radiometrically Terrain Corrected ALOS PALSAR Data Available from the Alaska Satellite Facility. In AGU Fall Meeting Abstracts.

Lovejoy, S., & Schertzer, D. (1988). Extreme variability, scaling, and fractals in remote sensing- analysis and simulation. Digital image processing in remote sensing(A 89-29064 11-43). London and Philadelphia, PA, Taylor and Francis, 1988, 177-212.

Malamud, B. D., & Turcotte, D. L. (2001). Wavelet analyses of Mars polar topography. Journal of Geophysical Research: Planets106(E8), 17497-17504.

Masoud, A. A., & Koike, K. (2011). Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data. ISPRS Journal of Photogrammetry and Remote sensing66(6), 818-832.

Mostafa, M. E., & Bishta, A. Z. (2005). Significance of lineament patterns in rock unit classification and designation: a pilot study on the Gharib‐Dara area, northern Eastern Desert, Egypt. International Journal of Remote Sensing, 26(7), 1463-1475.

Mwaniki, M. W., Moeller, M. S., & Schellmann, G. (2015). A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualizing lineaments: A case study of central region Kenya. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.

Outcalt, S. I., Hinkel, K. M., & Nelson, F. E. (1994). Fractal physiography?. Geomorphology11(2), 91-106.

Pentland, A. P. (1984). Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis & Machine Intelligence, (6), 661-674.

Qari, M. Y. H. (1990, May). Application Of Landsat Tm Data To Lithological And Lineament Studies, Southern Arabian Shield. In Geoscience and Remote Sensing Symposium, 1990. IGARSS'90.'Remote Sensing Science for the Nineties'., 10th Annual International (pp. 997-997). IEEE.

Rahman, Z., Slob, S., & Hack, R. (2006, September). Deriving roughness characteristics of rock mass discontinuities from terrestrial laser scan data. In Proceedings of 10th IAEG Congress: Engineering geology for tomorrow's cities, Nottingham, United Kingdom.

Rajesh, H. M. (2008). Mapping Proterozoic unconformity-related uranium deposits in the Rockhole area, Northern Territory, Australia using Landsat ETM+. Ore Geology Reviews, 33(3-4), 382-396.

Riley, S.J., De Gloria, S.D., Elliot, R. (1999). Index that quantifies topographic heterogeneity. Intermountain Journal of Sciences5(1-4), 23-27.

Saadi, N. M., Zaher, M. A., El-Baz, F., & Watanabe, K. (2011). Integrated remote sensing data utilization for investigating the structural and tectonic history of the Ghadames Basin, Libya. International Journal of Applied Earth Observation and Geoinformation, 13(5), 778-791.

Schuller, D. J., Rao, A. R., & Jeong, G. D. (2001). Fractal characteristics of dense stream networks. Journal of hydrology243(1-2), 1-16.

Shahzad, F., & Gloaguen, R. (2011). TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 1: Drainage network preprocessing and stream profile analysis. Computers & Geosciences, 37(2), 250-260.

Skoda, G. (1987). Fractal dimension of rainbands over Hilly terrainFraktale Dimension von Niederschlagsbändern über hügeligem Gelände. Meteorology and Atmospheric Physics, 36(1-4), 74-82.

Sung, Q. C., Chen, Y. C., & Chao, P. C. (1998). Spatial variation of fractal parameters and its geological implications. Terrestrial, Atmospheric and Oceanic Sciences, 9(4), 655-672.

Turcotte, D. L. (1997). Fractals and chaos in geology and geophysics. Cambridge university press.

Willett, S. D. (1999). Orogeny and orography: The effects of erosion on the structure of mountain belts. Journal of Geophysical Research: Solid Earth, 104(B12), 28957-28981.

Xie, H., & Wang, J. A. (1999). Direct fractal measurement of fracture surfaces. International Journal of Solids and Structures, 36(20), 3073-3084.

Xu, T., Moore, I. D., & Gallant, J. C. (1993). Fractals, fractal dimensions, and landscapes - a review. Geomorphology, 8(4), 245-262.