ارزیابی خشکسالی جریان رودخانه مبتنی بر رویکرد سطح آستانه با استفاده از داده جریان دائمی در زیرحوضه آبریز بیابان لوت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه محیط زیست، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان

2 استادیار، گروه جغرافیا، دانشگاه پیام نور، تهران

3 استادیار، دانشکده جغرافیا و برنامه ریزی محیطی، گروه جغرافیای طبیعی، دانشگاه سیستان و بلوچستان، زاهدان

4 دانشیار، گروه جغرافیا، دانشگاه پیام نور، تهران

10.22111/jneh.2019.28197.1483

چکیده

خشکسالی، از مخاطرات طبیعی اساسی به‌ویژه در مناطق خشک ونیمه‌خشک شناخته شده است که مسائل قابل ملاحظه‌ای در رابطه با مدیریت منابع آب دارد. شناسایی، پایش و بررسی مشخصه‌های خشکسالی‌ها، برای برنامه‌ریزی و مدیریت منابع آب بسیار مهم است. این پژوهش متمرکز بر بررسی خشکسالی آب شناختی با استفاده از رویکرد سطح آستانه متغیر در زیر حوضه آبریز کویر لوت می‌باشد. این رویکرد، با استفاده از داده‌های 10-روزه جریان در رودخانه نساء برای دورة آبی 58-1357 تا 92-1391 اجرا شده است. رویدادهای خشکسالی مستقل به وسیله ادغام رویدادهای وابسته با رویکرد معیار داخلی شناسایی و مشخصه‌های آن‌ها شامل آغاز، پایان و دوام بررسی شده است. علاوه بر آن، شدت خشکسالی‌های مستقل با استفاده از شاخص شدت خشکسالی رده‌بندی شده است. نتایج این بررسی نشان داد که رژیم آبدهی رودخانه نساء بیشتر درگیر خشکسالی‌های طولانی مدت و شدید بوده است. رویدادهای خشکسالی مستقل طولانی مدت و با شدت فرین در رژیم آبی رودخانه مذکور بر دهة آخر متمرکز هستند. پیشنهاد می‌شود در پژوهش‌های آتی اثر روش‌های مختلف در ادغام رویدادهای وابسته خشکسالی با روش مبتنی بر حجم و زمان میان رویدادی (معیار داخلی) مقایسه شود.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Streamflow Drought Based on Truncation Level (TL) Using Permanent Streamflow Data in one of the Sub-Basin of Lut Desert, Iran

نویسندگان [English]

  • Hamid Nazaripour 1
  • Mahdi Sedaghat 2
  • Mohammadreza Poodineh 3
  • Amir Hossein Halabian 4
1 Assistant Professor, Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
2 Assistant Professor, Department of Geography, Payam Noor University, Tehran, Iran
3 Assistant Professor, Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan, Zahedan, Iran
4 Associate Professor Department of Geography, Payam Noor University, Tehran, Iran
چکیده [English]

Drought is known as one of the main natural hazards especially in arid and semi-arid regions where there are considerable issues in regard to water resources management. The focus of the present study is mainly on hydrological aspects of drought. For hydrological drought analysis, streamflow data is used as the key variable to identify drought events with reference to a demand specific threshold level, termed as truncation level. Thus, the objective of the present study is to (a) investigate the hydrological drought characteristics in Nesa River using streamflow data; (b) determine independent drought events, their duration, and severity using the variable truncation level approach; and (c) derive streamflow drought severity index. Based on expedience probabilities, the monthly flow duration curves for Nesa River were derived. These were utilized to estimate different dependable flows, and the values of variable truncation levels were obtained for a 75% probability level for each month. These values were used to distinguish the deficit and surplus flow periods independent drought events identified using the pooling procedure. Since 10 daily flow data were utilized, the minimum deficit flow duration was 10 days. In the following, have been identified some short duration (one or two 10-daily time step) surplus and deficit events. To decide on independent drought despite the short duration inter-event surplus has been used for a pooling procedure known as inter-event time and volume criterion (IC). Eventually, identified independent drought events and also describe their duration, severity, intensity, and DSI. Analysis of independent drought Characteristics in Nesa River indicated that are prolonged dry period in the hydrological regime of this river. In addition, based on DSI, Nesa droughts mostly are in sever category. Hence, it is suggested more realistic reload occurs in management programs of this river including storage, distribution and assign to various resources.

کلیدواژه‌ها [English]

  • Hydrological drought
  • Truncation level
  • Low flow
  • Deficit flow
  • Drought severity index

نظری پور حمید(1395)، واسنجی روابط بارش-جریان رودخانه برای ارزیابی و امکان پیش بینی خشکسالی آبشناختی در حوضه آبریز کویر لوت(ایران)، مهندسی منابع آب، دوره 9، شماره 31، صص90-73.

Barradas, Victor L., (1991), Air temperature and humidity and human comfort index of some city parks of Mexico City, International Journal of Biometeorology, Vol. 35, No.1.

Bazrafshan, J., Hejabi, S., & Rahimi, J. (2014). Drought monitoring using the multivariate standardized precipitation index (MSPI). Water resources management, 28(4), 1045-1060.

Ben-Zvi, A. 1987. Indices of hydrological drought in Israel.Journal of hydrology. 92(1–2), 179–191.

Chang, T. J., and Kleopa, X. 1991. A proposed method for drought monitoring. Water Resources. Bull., 27(2), 275–281.

Chen, S. T., Kuo, C. C., and Yu, P. S. (2009). Historical trends and variability of meteorological droughts in Taiwan. Hydrological Sciences Journal., 54(3), 430–441.

Chen, Y. D., Zhang, Q., Xiao, M., & Singh, V. P. (2013). Evaluation of the risk of hydrological droughts by the trivariate Plackett copula in the East River basin (China). Natural hazards, 68(2), 529-547.

Daneshvar, M. R. M., Bagherzadeh, A., & Khosravi, M. (2013). Assessment of drought hazard impact on wheat cultivation using the standardized precipitation index in Iran. Arabian Journal of Geosciences, 6(11), 4463-4473.

Dracup, J. A., Lee, K. S., and Paulson, E. G., Jr. (1980a). On the statistical characteristics of drought events. Water Resources Research,16(2), 289–296.

Dracup, J. A., Lee, K. S., and Paulson, E. G., Jr. (1980b). On the definition of droughts. Water Resources Research, 16(2), 297–302.

Edossa, D. C., Babel, M. S., and Gupta, A. D. (2010). Drought analysis in the Awash River Basin, Ethiopia. Water Resources Management. 24(7), 1441–1460.

Fleig, A. K., Tallaksen, L. M., Hisdal, H. Y., and Demuth, S. 2006. A global evaluation of streamflow drought characteristics. Hydrology and Earth System Sciences, 10(4), 532–552.

Golian, S., Mazdiyasni, O., & AghaKouchak, A. (2015). Trends in meteorological and agricultural droughts in Iran. Theoretical and Applied Climatology, 119(3-4), 679-688.

Hannaford, J., Lloyd-Hughes, B., Keef, C., Parry, S., and Prudhomme, C. (2011). Examining the large-scale spatial coherence of European drought using regional indicators of precipitation and streamflow deficit. Hydrological Processes. 25(7), 1146–1162.

Hisdal, H., Tallaksen, L. M., Clausen, B., Peters, E., and Gustard, A. (2004). Hydrological drought characteristics. Hydrological drought processes and estimation methods for streamflow and groundwater, L. M. Tallaksen and H. A. J. Van Lanen, eds., Elsevier, Amsterdam, Netherlands, 139–182.

Hosseinzadeh Talaee, P., Tabari, H., & Sobhan Ardakani, S. (2014). Hydrological drought in the west of Iran and possible association with large scale atmospheric circulation patterns. Hydrological Processes, 28(3), 764-773.

Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Trans.American Society of Civil Engineers., 116, 770-808.

Jain, V. K., Jain, M. K., & Pandey, R. P. (2014). Effect of the length of the streamflow record on truncation level for assessment of streamflow drought characteristics. Journal of Hydrologic Engineering, 19(7), 1361-1373.

Khedun, C. P., Chowdhary, H., Mishra, A. K., Giardino, J. R., and Singh, V. P. (2013). Water deficit duration and severity analysis based on runoff derived from the Noahland surface model.Journal of Hydrologic Engineering. 18(7), 817–833.

Kienzle SW. (2006). The use of the recession index as an indicator for streamflow recovery after a multi-year drought. Water Resources Management. 20(6):991–1006.

Kjeldsen, T. R., Lundorf, A., and Rosbjerg, D. (2000). Use of a two-component exponential distribution in partial duration modelling of hydrological droughts in Zimbabwean rivers. Hydrological Science Journal., 45(2), 285–298.

Kjeldsen, T.R. and Lundorf, A. (1997) Drought Management and Modelling — Zimbabwe Case, MSc Thesis, DTU, Technical University of Denmark

Kousari, M. R., Dastorani, M. T., Niazi, Y., Soheili, E., Hayatzadeh, M., & Chezgi, J. (2014). Trend detection of drought in arid and semi-arid regions of Iran based on implementation of reconnaissance drought index (RDI) and application of non-parametrical statistical method. Water resources management, 28(7), 1857-1872.

Lorenzo-Lacruz, J., et al. (2010). The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). Journal of Hydrology., 386(1–4), 13–26.

Madsen, H., and Rosbjerg, D. (1995). On the modelling of extreme droughts. Modeling and Management of sustainable basin-scale water resources systems: Proc., Boulder Symp. July 1995, International Association of Hydrological Sciences (IAHS), U.K., 377–385.

Meigh J, Tate E, McCartney M. (2002). Methods for identifying and monitoring river floe drought in southern Africa. In; van Lanen and Demuth (eds.) FRIEND 2002—Regional hydrology: bridging the gap between research and practice. IAHS Publication No. 274, 181–188.

Mishra, A. K., and Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216.

Nalbantis, I., and Tsakiris, G. (2009). Assessment of hydrological drought revisited. Water Resources Management. 23(5), 881–897.

Nazaripour, H. (2016). Calibration of rainfall-stream flow relationship for assessing and forecasting hydrological drought in kavir-e lut basin, Iran. water resources engineering, 9(31), 73-90.

Pandey, R. P., and Ramasastri, K. S. (2002). Incidence of droughts in different climatic regions. Hydrological Sciences Journal., 47(Suppl. 1), S31–S40.

Pandey, R. P., Mishra, S. K., Singh, R., and Ramasastri, K. S. (2008). Streamflow drought severity analysis of Betwa River System (India). Water Resources Management. 22(8), 1127–1141.

Rajsekhar, D., Mishra, A. K., and Singh, V. P. (2013). Regionalization of drought characteristics using an entropy approach.” Journal of Hydrologic Engineering. 18(7), 870–887.

Raziei, T., Bordi, I., & Pereira, L. S. (2011). An application of GPCC and NCEP/NCAR datasets for drought variability analysis in Iran. Water resources management, 25(4), 1075-1086.

Raziei, T., Bordi, I., & Pereira, L. S. (2013). Regional drought modes in Iran using the SPI: the effect of time scale and spatial resolution. Water resources management, 27(6), 1661-1674.

Sen, Z. (1980). Statistical analysis of hydrologic critical droughts. Journal of hydraulics Division ., 106(1), 99–115.

Smakhtin, V. U .2001. Low flow hydrology: a review. Journal of Hydrology240:147–186.

Tabari, H., Abghari, H., & Hosseinzadeh Talaee, P. (2012). Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrological Processes, 26(22), 3351-3361.

Tabari, H., Nikbakht, J., & Talaee, P. H. (2013). Hydrological drought assessment in Northwestern Iran based on streamflow drought index (SDI). Water resources management, 27(1), 137-151.

Tabari, H., Nikbakht, J., and Talaee, P. H. (2013). Hydrological drought assessment in Northwestern Iran based on Streamflow Drought Index (SDI). Water resources management 27(1), 137–151.

Tallaksen L. M, van Lanen H. A. J (eds.) (2004). Hydrological drought-processes and estimation methods for streamflow and groundwater. Development in Water Science, Elsevier, Amsterdam.

Tallaksen, L. M., and Van Lanen, H. A. J. (2004). Hydrological drought—Processes and estimation methods for streamflow and groundwater. Developments in water sciences 48, Elsevier, Netherlands.

Tallaksen, L. M., Madsen, H., and Clausen, B. (1997). On the definition and modelling of streamflow drought duration and deficit volume.Hydrological Sciences Journal, 42(1), 15–33.

Tate, E. L., and Gustard, A. (2000). Drought definition: A hydrological perspective. Drought and drought mitigation in Europe, Kluwer, Dordrecht, Netherlands, 23–48.

Vasiliades, L., and Loukas, A. (2009). Hydrological response to meteorological drought using the palmer drought indices in Thessaly, Greece. Desalination, 237(1–3), 3–21.

Vasiliades, L., Loukas, A., and Liberis, N. (2011). A water balance derived drought index for Pinios River Basin, Greece. Water Resources Management. 25(4), 1087–1101.

Vicente-Serrano, S., López-Moreno, J., Beguería, S., Lorenzo-Lacruz, J., Azorin-Molina, C., and Morán-Tejeda, E. (2012). Accurate Computation of a Streamflow Drought Index." Journal of Hydrologic Engineering, 17(2), 318-332.

Vidal, J. P., et al. (2010). Multilevel and multi-scale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite. Hydrol. Earth System. Science., 14(3), 459–478.

Wilhite, D. A., and Glantz, M. H. (1985). Understanding the drought phenomenon: The role of definitions.» Water International. 10(3):111–120.

World Meteorological Organization (WMO). (1975). Drought and agriculture. Note 138, Publ. WMO-392, Geneva, Switzerland.

Wu, H., Soh, L. K., Samal, A., and Chen, X. H. (2007). Trend analysis of streamflow drought events in Nebraska.» Water resources management. 22(2), 145–164.

Zaidman, M. D., Rees, H. G., and Young, A. R. (2001). Spatio-temporal development of streamflow droughts in north-west Europe. Hydrology and Earth System Sciences., 6(4), 733–751.

Zarch, M. A. A., Malekinezhad, H., Mobin, M. H., Dastorani, M. T., & Kousari, M. R. (2011). Drought monitoring by reconnaissance drought index (RDI) in Iran. Water resources management, 25(13), 3485-3504.

Zelenhasic, E., and Salvai, A. (1987). A method of streamflow drought analysis. Water Resources Research., 23(1), 156–168.