تنش های نوزمین ساختی در گستره ی رخداد زمین لرزه سنگچال (1336) - مازندران

نوع مقاله: مقاله پژوهشی

نویسنده

1- استادیار گروه زمین شناسی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد دماوند

10.22111/jneh.2020.30675.1535

چکیده

زمین لرزه ی سنگچال در 11 تیر 1336 در محدوده بخش مرکزی گسل شمال البرز رخداده است. گسل شمال البرز، گسلی کمانی شکل بوده که از لاهیجان تا گنبدکاووس کشیده شده است. این گسل به همراه گسل های خزر، لله بند، کندوان و مشا در کوتاه شدگی و برخاستگی رشته کوه های البرز اثر گذار بوده اند. این کوتاه شدگی و بالاآمدگی با رخدادهای زمین لرزه ای بزرگی همراه بوده که امروزه نیز ادامه دارد. با آگاهی از هندسه گسل ها و چگونگی جابجایی گسل ها و استفاده از روش های محاسباتی تحلیل گسل ها و هم چنین با کمک حل ساز وکار ژرفی گسلش، جهت یابی بیشینه تنش حاکم بر بخشی از گسل شمال البرز که محدوده رخداد زمین لرزه بزرگ 1336 سنگچال بوده، تعیین شده است. این دو روش نتایج مشابه قابل قبولی را نشان می دهند. علاوه بر این، مقایسه یافته ها با نتایج بررسی های زمین سنجی کلی گستره، صحت و دقت یافته ها، تأیید شده است. نتایج بررسی نشان می دهد در طول گسله شمال البرز، تنش فشاری با روند شمال خاور- جنوب باختر غالب بوده که بردار امتداد لغز چپگرد نیز در آن دیده می شود. از بخش های مرکزی البرز به سوی خاور، بدلیل کاهش زاویه بین بردار بیشینه تنش و روند گسل، جابجایی حاصل از بردار چپگرد از مرکز به سمت خاور افزایش یافته و باعث بزرگتر شدن بردار برش نسبت به فشارش در بخشهای خاوری البرز می گردد. این مکانیسم، باعث رخداد زمین لرزه های فشاری در البرز مرکزی و زمین لرزه های فشاری- برشی در بخشهای خاوری گردیده که نشان می دهد بزرگای زمین لرزه های احتمالی آتی در بخش های خاوری کمی کوچکتر از زمین لرزه های البرز مرکزی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Neotectonic stresses in the Sangchal earthquake (1957) area – Mazandaran

نویسنده [English]

  • Hadi Tabassi
Assistant Professor in Geology Department, Faculty of Science, Islamic Azad University, Damavand Branch, Iran
چکیده [English]

The Sangchal earthquake occurred on July 2, 1957, in the central part of the North Alborz fault zone. The North Alborz fault is an arched shape fault that continued from Lahijan to Gonbad-e Kavos. This fault, along with Khazar, Lalehband, Kandovan and Mosha faults affected by the shortening and rising of the Alborz Mountains. This shortening and uplift accompanied by large earthquake events that continue today. With knowledge of the geometry of faults and how faults are displaced and the use of computational methods for fault analysis and also, the Focal mechanism, direction of maximum tension governing the part of north Alborz fault has been determined. The two methods show acceptable results. In addition, the comparison of the findings with the results of geodetic studies of the scope, accuracy of the findings confirmed. The results of the study show that during the North Alborz Fault, the dominant vector is compressive, and the left-lateral slip is observed. From the central part of the Alborz to the east, the left lateral displacements increases and cause shear mechanism in the eastern parts of the Alborz. This movement has caused compressive earthquakes in the central Alborz and compressive-shear earthquakes in the eastern parts. Therefore, the magnitude of future earthquakes in the eastern part is slightly smaller than the central Alborz earthquakes.

کلیدواژه‌ها [English]

  • Neotectonic Stress
  • North Alborz Fault
  • Maximum Stress Orientation
  • Earthquake
  • Alborz
آقانباتی سید علی (1383)، زمین‌شناسی ایران، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور، 586 ص.

پدرامی منوچهر(1367)، سن مطلق مرز زیرین کواترنر در حدود 600 هزار سال است.، مجله علوم دانشگاه تهران، سال هفدهم، شماره 3-4، صص 105-114.

خرمی فاطمه، حسامی خالد، نانکلی حمیدرضا، توکلی فرخ (1390)، بررسی زمین‌ساخت جنبا در منطقه البرز با استفاده از مشاهدات شبکه دائمی GPS، فصلنامه علمی پژوهشی علوم زمین، سال بیست و یکم، شماره 82، صص 223-230.

قدیمی افسانه، مقتصد آذر خسرو، نانکلی حمیدرضا (1395)، مطالعه تغییر شکل هندسی پوسته زمین در منطقه البرز با استفاده از داده های GPS و مشاهدات لرزه نگاری، نشریه علمی پژوهشی علوم و فنون نقشه برداری، سال پنجم، شماره چهار، صص ۱۸۷-۱۹۸.

نبوی محمد حسن(1355)،  دیباچه ای بر زمین شناسی ایران: انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، 109ص.

Allenbach, P., (1966), Geologie und Petrographie des Damavand und seiner Umgebung (Zentral-Elburz) Iran. Diss. ETH Zürich, 145 p.

Ambraseys, N. N. (1974), Historical seismicity of north-central Iran In Materials for the study of seismotectonic of Iran; North Central Iran. Geol. Surv. Iran, 29, 47-95.

Ambraseys, N. N. (1968), early earthquakes in North-Central Iran. Bulletin of the Seismological Society of America, 58(2), 485-496.

Angelier, J. (1975), Sur l’analyse de measures recueillies dans des sites failles: l’utilite d’ une confrontation entre les methods dynamiques et cinematiques. CR Seances Acad. Sci. Paris D 281, 1805–1808.

Angelier, J. (1979), Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56(3–4), TI7–T26.

Angelier, J. (1984), Tectonic analysis of fault slip data sets. J. Geophys. Res. 89(B7), 5835–5848.

Angelier, J. (1990), Inversion of field data in fault tectonics to obtain the regional stress III: a new rapid direct inversion method by analytical means. Geophys. J. Int. 103(2), 363–376.

Angelier, J., Goguel, J. (1979), Sur une méthode simple de determination des axes principaux des contraintes pour une population defailles. CRA cad. Sci. 288(1), 307–310.

Angelier, J., Mechler, P. (1977), Sur une méthode graphique de recherché des contraintes principals’ également utilizable en tectonique et en séismologie: la method des dièdres droits. Bull. Soc. Géol. France 7(19(6)), 1309–1318.

Ballato, P., Cifelli, F., Heidarzadeh, Gh., Ghassemi, M. R., Wickert, A. D., Hassanzadeh, J., Dupont-Nivet, G., Balling, Ph., Sudo, M., Zeilinger, G., Schmitt, A. K., Mattei, M., Strecker, M. R. (2016), Tectono-sedimentary evolution of the northern Iranian Plateau: insights from middle-late Miocene foreland-basin deposits. Basin Research, 29(4), 417-446.

Ballato, P., Landgraf, A., Schildgen, T. F., Stockli, D. F., Fox, M., Ghassemi, M. R., Kirby, E., Strecker, M. R. (2015), The growth of a mountain belt forced by base-level fall: Tectonics and surface processes during the evolution of the Alborz Mountains, N Iran. Earth and Planetary Science Letters, 425, 204-218.

Berberian, M., Qorashi, M., Jackson, J., Priestley, K., Wallace, T. (1992), The Rudbar-Tarom earthquake of 20 June 1990 in NW Persia: Preliminary field and seismological observations, and its tectonic significance. Bulletin of the Seismological Society of America, 82(4), 1726-1755.

Berberian, M. (1983), The southern Caspian: A compressional depression floored by a trapped, modified oceanic crust. Canadian Journal of Earth Sciences, 20(2), 163-183.

Bobek, H. (1937), Die Rolle der Eiszeit in Nordwestiran, Borntraeger.

Carey, M. E., Brunier, M.B. (1974), Analyse théoretique et numérique d une modèle mécanique élémentaire applique a l étude d une population de failles. CR Acad. Sci 279 D, 891–894.

Delvaux, D. and B. Sperner (2003), New aspects of tectonic stress inversion with reference to the TENSOR program. Geological Society, London, Special Publications, 212(1), 75-100.

Djamour, Y., Vernant, Ph., Bayer, R., Nankali, H.R., Ritz J-F., Hinderer, J., Hatam, Y., Luck, B., Le Moigne, N., Sedighi, M.,  Khorrami. F. (2010), GPS and gravity constraints on continental deformation in the Alborz Mountain range, Iran. Geophysical Journal International, 183(3), 1287-1301.

Etchecopar, A., Vasseur, G., Daignieres, M. (1981), An inverse problem in micro- tectonics for the determination of stress tensors from fault striation analysis. J. Struct. Geol. 3(1), 51–65.

Ehlers, E. (1971), Sudkaspisches Tiefland (Nordiran) und Kaspisches Meer: Beitrage zu ihrer Entwicklungsgeschichte im Jung-und Postpleistozan. Tübinger Geogr. Studien, 44.

Fedorov, P. V. (1957), Stratigraphie pleistozäner Sedimente und die Entwicklungsgeschichte des Kaspischen Meeres. Trudy GeoI, 10.

Fry, N. (1999), Striated faults: the visual appreciation of their constraint on possible palaeostress tensors. J. Struct. Geol. 21(1), 7–27.

Gansser, A.,(1969), The large earthquakes of Iran and their geological frame: Eclog. Geol. Helv., 62(2), 443-466.

Gephart, J.W. (1990), Stress and the direction of slip on fault planes. Tectonics 9(4), 845–858.

Gephart, J.W., Forsyth, D.W. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando Earthquake sequence. J. Geophys. Res. 89 (B11), 9305–9320.

Gillard, D. and M. Wyss (1995), Comparison of strain and stress tensor orientation: Application to Iran and southern California. Journal of Geophysical Research: Solid Earth, 100(B11), 22197-22213.

Hardcastle, K.C., Hills, L.S. (1991), Brute3 and Select: Quick Basic 4 program for determination of stress tensor configurations and separation of heterogeneous populations of fault slip data. Comput. Geosci. 17(1), 23–43.

Huang, Q. (1988), Computer-based method to separate heterogeneous sets of fault- slip data into subsets. J. Struct. Geol. 10(3), 278–299.

Jackson, J., Priestley, K., Allen, M., Berberian, M. (2002), Active tectonics of the South Caspian Basin. Geophysical Journal International, 148(2), 214-245.

Jackson, J. and D. McKenzie (1984), Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International, 77(1), 185-264.

Javidfakhr, B., Bellier, O., Shabanian, E., Siame, L., Léanni, L., Bourlès, D., Ahmadian, S. (2011), Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): Geodynamic implications for NNE Iran., Journal of Geodynamics, 52(3), 290-303.

Jung, D., Kursten, M. and Tarkian, M., (1976), Post- Mesozoic volcanism in Iran and its relation to the subduction of the Afro-Arabian under the Eurasian plate. In: Pilger, A., Rosler, A., (Eds.), afar between continental and oceanic rifting. Schweizerbartsche Verlagbuchhandlung, Stuttgart, 175-181.

Krejci, D., Richter, C. (1991), SPLIT: a Turbo-C program for the graphical representation and separation of fault-slip data sets. Comput. Geosci. 17(6), 801–811.

Krumsiek, K. (1976), Zur Bewegung der Iranisch-Afghanischen Platte. Geologische Rundschau, 65(1), 909-929.

Lisle, R.J. (1988), ROMSA: a BASIC program for paleo stress analysis using fault- striation data. Comput. Geosci. 14(2), 255–259.

Lisle, R.J., Orife, T. (2002), STRESSTAT: a Basic program for numerical evaluation of stress inversion results. Comput. Geosci. 28(9), 1037–1040.

Masson, F., Anvari, M., Djamour, Y., Walpersdorf, A., Tavakoli, F., Daignières, M., Nankali, H., Van Gorp, S. (2007), Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran. Geophysical Journal International, 170(1), 436-440.

Masson, F., Chéry, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F., Ghafory‐Ashtiani, M. (2004), Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophysical Journal International, 160(1), 217-226.

Mostafa, M.E. (2005), Iterative direct inversion: an exact complementary solution for inverting fault-slip data to obtain palaeostresses. Comput. Geosci. 31(8), 1059–1070.

Mousavi, Z., Walpersdorf, A., Walker, R. T., Tavakoli, F., Pathier, E., Nankali, H., Nilfouroushan, F., Djamour. Y. (2013), Global Positioning System constraints on the active tectonics of NE Iran and the South Caspian region. Earth and Planetary Science Letters, 377-378, 287-298.

Nabavi, M.S., (1972), The seismicity of Iran [M. Phil. Thesis]: London, Imperial College, London University. 273p.

Nemčok, M., Lisle, R.J. (1995), A stress inversion procedure for more polyphase fault/slip data sets. J. Struct. Geol. 17(10), 1445–1453.

Nowroozi, A. A. (1971), Seismo-tectonics of the Persian plateau, eastern Turkey, Caucasus, and Hindu-Kush regions. Bulletin of the Seismological Society of America, 61(2), 317-341.

Orife, T., Arlegui, L., Lisle, R.J. (2002), DIPSLIP: Quick Basic stress in version program for analyzing sets of faults without slip lineations. Compute. Geosci. 28(6), 775–781.

Pascal, C. (2004), SORTAN: a UNIX program focal culation and graphical presentation of fault slip as induced by stresses. Comput. Geosci. 30(3), 259–265.

Raufi, F. and O. Sickenberg (1973), Zur Geologie und Paläontologie der Becken von Lagman und Jalalabad, Geologische Jahrbuch, 3, 63-99.

Reches, Z. (1987), Determination of the tectonic stress tensor from slip along faults with Coulomb yield condition. Tectonics 6(6), 849–861.

Rivière, A., (1934), Contribution à l’étude géologique de l’Elburz (Perse). Revue de Géographie, Physique ET Géologie Dynamique, 7, 1-90.

Sasvári, Á. and Baharev, A. (2014), SG2PS (structural geology to postscript converter) – A graphical solution for brittle structural data evaluation and paleo stress calculation. Comput. Geosci. 66, 81-93.

Shan, Y., Li, Z., Lin, G. (2004), A stress inversion procedure for automatic recognition of polyphase fault/slip data sets. J. Struct. Geol. 26(5), 919–925.

Shorrock, C., Lisle, R.J. (1998), DATACON: a Quick Basic program to reformat orientation data from faults. Comput. Geosci. 24(6), 585–590.

Stöcklin, J. (1960), Ein Quershhnitt durch den ost, Elburz. Eclogae Geologicae Helvetiae, 52(2), 681-694.

Spang, J.H. (1972), Numerical method for dynamic analysis of calcite twin lamellae. Geol. Soc. Am. Bull. 83(2), 467–

472.

Sperner, B., Ratschbacher, L., Ott, R. (1993), Fault striae analysis: a Turbo Pascal program package for graphical presentation and reduced stress tensor calculation. Comput. Geosci. 19(9), 1362–1388.

Taboada, A., Tourneret, C., Laurent, P. (1991), An interactive program for the graphical representation of striated faults and applied normal and tangential stresses. Comput. Geosci. 17(9), 1281–1310.

Tchalenko, J.S. (1974), Recent Destructive Earthquakes in the Central Alborz (Iran). Engineering Seismology, Imperial College, London.

Tobore, O., Lisle, R.J. (2003), Numerical processing of palaeostress results. J. Struct. Geol. 25(6), 949–957.

Turner, F.J. (1953), Nature and dynamic interpretation of deformation lamellae in calcite of three marbles. Am. J. Sci., 251, 276–298.

Vernant, Ph.,  Nilforoushan, F., Hatzfeld, D.,  Abbassi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer R., Tavakoli, F., Chéry, J. (2004), Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157(1), 381-398.

Will, T.M., Powell, R. (1991), A robust approach to the calculation of paleo stress fields from fault plane data. J. Struct. Geol. 13(7), 813–821.

Yin, Z.M., Ranalli, G. (1995), Estimation of the frictional strength of faults from inversion of fault-slip data – a new method. J. Struct. Geol. 17(9), 1327–1335.

Zarifi, Z., Nilfouroushan, F., Raeesi, M. (2013), Crustal Stress Map of Iran: Insight from Seismic and Geodetic Computations. Pure and Applied Geophysics, 171(7), 1219-1236.