Evaluation of Random Forest and Support Vector Machine Models in Landslide Risk Mapping (Case study: Tajan Basin, Mazandaran Province)

Document Type : Original Article

Authors

1 PhD Student of Watershed Management, Department of Watershed Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

2 Assistant Professor of Watershed Management, Department of Watershed Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

3 Associate Professor of Watershed Management, Department of Watershed Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

4 PhD Graduate of Watershed Management, Department of Watershed Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Abstract

The development of landslide susceptibility maps using machine learning is an effective tool for managing land in vulnerable regions. This study generates a landslide susceptibility map for the Tajan watershed using machine learning techniques. Twenty-one factors influencing landslides were identified and categorized into geological, climatic, environmental, topographical, and hydrological factors. Raster data was prepared using ENVI 5.6, SAGA GIS, and ArcGIS software. Field surveys documented 155 landslide locations, converted to point layers in ArcGIS. This data, along with the training layer, was imported into R software in ASCII format. For model training, Support Vector Machine (SVM) and Random Forest (RF) algorithms were applied, using 70% of the data (109 samples) for training and the remaining 30% (46 samples) for testing. Evaluation of the RF model using the ROC curve showed high predictive accuracy, with scores of 0.972 for training and 0.949 for testing. Analysis of the RF model identified key factors influencing landslides, including aspect, distance from streams and roads, slope, and the Topographic Position Index. The SVM model results indicated a greater proportion of high-susceptibility areas in the watershed than the RF model. AUC values for the SVM model were slightly lower, at 0.906 for training and 0.831 for testing. The SVM model highlighted elevation classes, rainfall, aspect, and distance from streams and roads as significant factors but underperformed compared to the RF model in mapping landslide susceptibility. Risk classification with the RF model showed that 10.19% of the area is very high risk, 4.17% high risk, 10.76% moderate risk, 15.62% low risk, and 59.26% very low risk. Conversely, the SVM model predicted smaller very high-risk areas at 5.51%, high risk at 15.58%, moderate risk at 5.33%, low risk at 4.47%, and very low risk at 69.09%.

Keywords

Main Subjects


References (in Persian)
Darabi Shahmari, S., Saffari, A. (2019). Landslide susceptibility mapping of Dalahoo Mountains using index of Entropy and Logistic Regression model. Journal of Spatial Analysis Environmental Hazards, 6(2), 165-180. http://jsaeh.khu.ac.ir/article-1-2401-fa.html. [In Persian].
Darvishi, Y., Moosavi nadoshan, S.M. (2023). Spatial analysis of landslide susceptibility in rural and urban areas using climatic and topographic indicators (Case study: boundaries of Gorgan city in Zarrin Gol watershed). Geographical Engineering of Territory, 7(2), 333-350. https://doi.org/10.22034/jget.2023.147993. [In Persian].
Karami, F., Bayati Khatibi M, Kheirizadeh, M., Mokhtari Asl, A. (2020). Evaluation of Performance of Support Vector Machine Algorithm in Landslide Susceptibility Zoning in Ahar-chai Basin. Journal of Geography and Environmental Hazards, 8(4), 1-17. https://doi.org/10.22067/geo.v8i4.83263 [In Persian].
Sepahvand, A., Beiranvand, N. (2024). Landslide susceptibility mapping using various soft computing techniques (Case study: A part of Haraz Watershed). Water and Soil Management and Modelling, 4(2), 261-278. https://doi.org/10.22098/mmws.2023.12678.1263 [In Persian].
Tablebi, A., Nafarzadegan, A., Malekinezhad, H. (2010). A Review on Empirical and Physically Based Modelling of Rainfall Triggered Landslides. Physical Geography Research, 41(70), 45-64. https://jphgr.ut.ac.ir/article_21521.html?lang=fa. [In Persian].
Zakerinejad, R., Kahrani, A. (2023). Assessment and Comparison of CART and TreeNet models to Landslide Susceptibility Mapping using SPM Software and Geographic Information System (GIS), (Case study: Kameh Watershed, Southern of Isfahan Province). Journal of Natural Environmental Hazards, 12(37), 17-38. https://doi.org/10.22111/jneh.2023.42304.1904. [In Persian]
 
References (in English)
Abedin, J., Rabby, Y. W., Hasan, I., Akter, H. (2020). An investigation of the characteristics, causes, and consequences of June 13, 2017, landslides in Rangamati District Bangladesh. Geoenvironmental Disasters, 7, 1-19. https://doi.org/10.1186/s40677-020-00161-z
Achu, A. L., Aju, C. D., Di Napoli, M., Prakash, P., Gopinath, G., Shaji, E., Chandra, V. (2023). Machine-learning-based landslide susceptibility modeling with emphasis on uncertainty analysis. Geoscience Frontiers, 14(6), 101657. https://doi.org/10.1016/j.gsf.2023.101657
Ado, M., Amitab, K., Maji, A. K., Jasińska, E., Gono, R., Leonowicz, Z., Jasiński, M. (2022). Landslide susceptibility mapping using machine learning: A literature survey. Remote Sensing, 14(13), 3029. https://doi.org/10.3390/rs14133029
Althuwaynee, O. F., Pradhan, B., Park, H. J., Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21-36. https://doi.org/10.1016/j.catena.2013.10.011
Azarafza, M., Azarafza, M., Akgün, H., Atkinson, P. M., Derakhshani, R. (2021). Deep learning-based landslide susceptibility mapping. Scientific reports, 11(1), 24112. https://doi.org/10.1038/s41598-021-03585-1
Beven, K. J., Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrological Sciences Journal, 24(1), 43-69. https://doi.org/10.1080/02626667909491834
Bhardwaj, D., Sarkar, R. (2024). Landslide susceptibility mapping using probabilistic frequency ratio and Shannon entropy for Chamoli, Uttarakhand Himalayas. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48(1), 377-395. https://doi.org/10.1007/s40996-024-01509-3
Bogaart, P. W., Troch, P. A. (2006). Curvature distribution within hillslopes and catchments and its effect on the hydrological response. Hydrology and Earth System Sciences, 10(6), 925-936. https://doi.org/10.5194/hess-10-925-2006
Carrión-Mero, P., Montalván-Burbano, N., Morante-Carballo, F., Quesada-Román, A., Apolo-Masache, B. (2021). Worldwide research trends in landslide science. International journal of environmental research and public health, 18(18), 9445. https://doi.org/10.3390/ijerph18189445
Chu, L., Wang, L. J., Jiang, J., Liu, X., Sawada, K., & Zhang, J. (2019). Comparison of landslide susceptibility maps using random forest and multivariate adaptive regression spline models in combination with catchment map units. Geosciences Journal, 23, 341-355. https://doi.org/10.1007/s12303-018-0038-8
Cortes, C., Vapnik, V. (1995). Support vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
Cui, K., Lu, D., Li, W. (2017). Comparison of landslide susceptibility mapping based on statistical index, certainty factors, weights of evidence, and evidential belief function models. Geocarto International, 32(9), 935-955. https://doi.org/10.1080/10106049.2016.1195886
Grabs, T., Seibert, J., Bishop, K., Laudon, H. (2009). Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology, 373(1-2), 15-23. https://doi.org/10.1016/j.jhydrol.2009.03.031
Gray, D. H., Sotir, R. B. (1996). Biotechnical and soil bioengineering slope stabilization: a practical guide for erosion control. John Wiley & Sons. 400 pages.
Habumugisha, J. M., Chen, N., Rahman, M., Islam, M. M., Ahmad, H., Elbeltagi, A., Sharma, G., Liza, S.N. and Dewan, A. (2022). Landslide susceptibility mapping with deep learning algorithms. Sustainability, 14(3), 1734. https://doi.org/10.3390/su14031734
Haque, U., Da Silva, P.F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., Lee, J. and Yamamoto, T. (2019). The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment, 682, 673-684. https://doi.org/10.1016/j.scitotenv.2019.03.415
Hemasinghe, H., Rangali, R.S.S., Deshapriya, N. L., Samarakoon, L. (2018). Landslide susceptibility mapping using logistic regression model (a case study in Badulla District, Sri Lanka). Procedia Engineering, 212, 1046-1053. https://doi.org/10.1016/j.proeng.2018.01.135
Hong, H., Liu, J., Bui, D.T., Pradhan, B., Acharya, T.D., Pham, B.T., Zhu, A.X., Chen, W. and Ahmad, B.B. (2018). Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging, and Rotation Forest ensembles in the Guangchang area (China). Catena, 163, 399-413. https://doi.org/10.1016/j.catena.2018.01.005
Huang, W., Ding, M., Li, Z., Zhuang, J., Yang, J., Li, X., Meng, L.E., Zhang, H. Dong, Y. (2022). An efficient user-friendly integration tool for landslide susceptibility mapping based on support vector machines: SVM-LSM toolbox. Remote Sensing, 14(14), 3408. https://doi.org/10.3390/rs14143408
Juliev, M., Mergili, M., Mondal, I., Nurtaev, B., Pulatov, A., Hübl, J. (2019). Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Science of the total environment, 653, 801-814. https://doi.org/10.1016/j.scitotenv.2018.10.431
Kanwal, S., Atif, S., Shafiq, M. (2017). GIS-based landslide susceptibility mapping of northern areas of Pakistan, a case study of Shigar and Shyok Basins. Geomatics, Natural Hazards and Risk, 8(2), 348-366. https://doi.org/10.1080/19475705.2016.1220023
Kavzoglu, T., Colkesen, I., Sahin, E. K. (2019). Machine learning techniques in landslide susceptibility mapping: a survey and a case study. Landslides: Theory, practice and modeling, 283-301. https://doi.org/10.1007/978-3-319-77377-3_13
Kim, J. C., Lee, S., Jung, H. S., Lee, S. (2018). Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto international, 33(9), 1000-1015. https://doi.org/10.1080/10106049.2017.1323964
Lacasse, S., Nadim, F. (2009). Landslide risk assessment and mitigation strategy. Landslides–disaster risk reduction, 31-61. https://doi.org/10.1007/978-3-540-69970-5_3
Merghadi, A., Yunus, A.P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D.T., Avtar, R. and Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225. https://doi.org/10.1016/j.earscirev.2020.103225
Moore, I. D., Burch, G. J. (1986). Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water resources research, 22(8), 1350-1360. https://ui.adsabs.harvard.edu/link_gateway/1986WRR....22.1350M/doi:10.1029/WR022i008p01350
Nefeslioglu, H. A., Duman, T. Y., Durmaz, S. (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94(3-4), 401-418. https://doi.org/10.1016/j.geomorph.2006.10.036
Obuchowski, N.A., Bullen, J.A. (2018). Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Physics in Medicine & Biology, 63(7), 07TR01. https://doi.org/10.1088/1361-6560/aab4b
Reily Shawn, J., DeGloria Stephen, D., Elliot Robert, A. (1999). Terrain Ruggedness Index That Quantifies Topographic Heterogeneity. intermountain Journal of Science, 5(1-4), 23-27.
Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., Müller, M. (2011). pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, 1-8. https://doi.org/10.1186/1471-2105-12-77
Roccati, A., Faccini, F., Luino, F., Ciampalini, A., Turconi, L. (2019). Heavy rainfall triggering shallow landslides: A susceptibility assessment by a GIS-approach in a Ligurian Apennine Catchment (Italy). Water, 11(3), 605. https://doi.org/10.3390/w11030605
Roy, P., Ghosal, K., Paul, P. K. (2022). Landslide susceptibility mapping of Kalimpong in Eastern Himalayan Region using a Rprop ANN approach. Journal of Earth System Science, 131(2), 130. https://doi.org/10.1007/s12040-022-01877-2
Schmidt, J., Evans, I. S., Brinkmann, J. (2003). Comparison of polynomial models for land surface curvature calculation. International Journal of Geographical Information Science, 17(8), 797-814. https://doi.org/10.1080/13658810310001596058
Selamat, S. N., Majid, N. A., Taha, M. R., Osman, A. (2022). Landslide susceptibility model using artificial neural network (ANN) approach in Langat river basin, Selangor, Malaysia. Land, 11(6), 833. https://doi.org/10.3390/land11060833
Sihag, P., Singh, V. P., Angelaki, A., Kumar, V., Sepahvand, A., Golia, E. (2019). Modeling of infiltration using artificial intelligence techniques in semi-arid Iran. Hydrological Sciences Journal, 64(13), 1647-1658. https://doi.org/10.1080/02626667.2019.1659965
Suhermat, M., Sugianti, K., Yunarto, Y., Kumoro, Y., Nur, W. H., Sukristiyanti, S., Lestiana, H. (2024). Effectiveness of Landslide Susceptibility Mapping Using the Maximum Entropy Model and Weights of Evidence Modelling in the Kuningan Regency, West Java, Indonesia. Rudarsko-geološko-naftni zbornik, 39(3), 27-42. https://doi.org/10.17794/rgn.2024.3.3
Sun, D., Xu, J., Wen, H., Wang, Y. (2020). An optimized random forest model and its generalization ability in landslide susceptibility mapping: application in two areas of Three Gorges Reservoir, China. Journal of Earth Science, 31, 1068-1086. https://doi.org/10.1007/s12583-020-1072-9
Weiss, A.D. (2001). Topographic Positions and Landforms Analysis, ESRI International User Conference, San Diego, CA, 3, 9-13.
Yeon, Y.K., Han, J.G., Ryu, K.H. (2010). Landslide susceptibility mapping in Injae, Korea, using a decision tree. Engineering Geology, 116(3-4), 274-283. https://doi.org/10.1016/j.enggeo.2010.09.009.

Articles in Press, Accepted Manuscript
Available Online from 12 January 2025
  • Receive Date: 13 October 2024
  • Revise Date: 10 December 2024
  • Accept Date: 12 January 2025